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(a) Football-NoTorus (b) Football-Torus (c) Recipe-NoTorus (d) Receipe-Torus

Figure 1: (a-b) shows node-link and toroidal representations of an American College football network (115 nodes, 669

links) [18]. The toroidal layout in (b) provides better use of the available space to provide greater separation between hub

nodes. (c-d) shows a recipe network (258 nodes, 1090 links) [2]. The toroidal layout in (d) makes it easier than the node-link

representations to identify that there are three main clusters in the network, which supports cluster understanding tasks.

ABSTRACT

We explore network visualisation on a two-dimensional torus topol-
ogy that continuously wraps when the viewport is panned. That is,
links may be “wrapped” across the boundary, allowing additional
spreading of node positions to reduce visual clutter. Recent work
has investigated such pannable wrapped visualisations, finding
them not worse than unwrapped drawings for small networks for
path-following tasks. However, they did not evaluate larger net-
works nor did they consider whether torus-based layout might also
better display high-level network structure like clusters. We offer
two algorithms for improving toroidal layout that is completely
autonomous and automatic panning of the viewport to minimiswe
wrapping links. The resulting layouts afford fewer crossings, less
stress, and greater cluster separation. In a study of 32 participants
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comparing performance in cluster understanding tasks, we find
that toroidal visualisation offers significant benefits over standard
unwrapped visualisation in terms of improvement in error by 62.7%
and time by 32.3%.
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1 INTRODUCTION

Node-link diagrams are the most common way of visualising net-
work data (or graphs) such as social and trade networks, software
architecture, biological networks across many domains. However,
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as the number of nodes and especially the number of links increases,
node-link diagrams become cluttered. In large and dense network
diagrams, it becomes difficult both to disambiguate individual links
but also to discern the high-level structure of the network, for exam-
ple, to make out local clusters of high connectivity. For this reason,
alternatives to node-link diagrams such as adjacency matrices can
be used [3, 26], but these suffer from the disadvantage that they
are unfamiliar and less intuitive [30, 32]. Here we explore a differ-
ent solution that still uses node-link diagrams but provides a less
cluttered layout that better reveals the network structure.

Node-link diagrams are traditionally laid out on a flat rectangu-
lar viewport corresponding to a printed page or computer display.
Highly connected network structures translate into diagrams with
many links that tend to cross the diagram leading to a dense, clut-
tered “hairball” (Fig. 1(a), Fig. 6(b), Fig. 9(a, c)). However, Chen et
al. [8] recently evaluated a technique using a force-directed ap-
proach for mapping arbitrary network structures embedded on a
toroidal surface—a problem long considered by graph theorists—to
diagrams with wraparound links in a pannable viewport, see Fig. 2.

Compared to a traditional layout, a toroidal topology diagram
allows for links to be wrapped horizontally and vertically around
the boundaries of the display, so the layout algorithm has more
flexibility to untangle the diagram. Chen et al. demonstrated that
for small networks this leads to less link crossings, less variability
in link length and greater incidence angle between links where
they connect to a node. Through a user study, the authors showed
that for small networks and with interactive panning, the resulting
layouts supported link following tasks at least as well as traditional
layouts. However, there a possible disadvantage of such wrapping
is that it requires users to follow wrapped links from one side of the
display to the other. Moreover, Chen et al. did not evaluate larger
networks nor did they consider whether the additional spreading
of torus-based layout might also better display high-level network
structure such as clusters.

In this paper, we build on the work by Chen et al. and intro-
duce a new layout method to better visualize cluster structures in
toroidal networks. Results show fewer crossings, less stress, greater
incidenceangle and greater cluster separation as well as less time
and errors in understanding clusters. Our individual contributions
are four-fold:
(1) A new algorithm for computing toroidal node-link diagram

layout. This algorithm, like Chen et al., is a general-purpose
toroidal layout algorithm based on a variant of a force-directed
placement. However, unlike Chen et al., our new toroidal layout
algorithm is considerably more robust, consistently producing
high-quality layouts (see Sect. 4). Our algorithm extends the
pairwise gradient descent algorithm of Zheng et al. [47] to
handle the more complex case of layout on a torus.

(2) An algorithm for computing how best to “cut” a toroidal net-
work layout to the surface of a torus, i.e., to automatically pan
the viewport to reduce the number of links wrapped. To the best
of our knowledge this has not been previously considered. As
shown in Fig. 2(c) and Fig. 4, our method better reveals clusters
and makes a considerable difference to the quality of the final
layout.

(3) An evaluation of layout metrics comparing automatic toroidal
and non-toroidal layout algorithms using a large corpus of

(a) Unwrapped (b) Wrapped (c) Best pan

Figure 2: Example of unwrapped and wrapped networks;

Colours are used to illustrate already known clustering in-

formation: (a) standard force-directed layout; (b) torus lay-

out wraps the links around the boundaries vertically top-to-

bottom, or horizontally left-to-right using our toroidal lay-

out algorithm (Sect. 3); (c) wrapping links are minimised by

our automatic pan algorithm (Sect. 3.3)

200 networks. This demonstrates that our introduced torus-
based layout algorithm is able to find node positions affording
better aesthetics in terms of fewer crossings, less stress, greater
incidence angle, and greater cluster distance than either non-
torus or Chen et al.’s toroidal layouts.

(4) A user study comparing our new algorithm with automatic pan-
ning to traditional network layouts for cluster understanding
tasks. This study differs from those in [8] in that we use (a) a
new and optimised layout algorithm with (b) automatic wrap-
ping, (c) larger networks (≤ 134 nodes, ≤ 2590 links), and (d)
focus on cluster discrimination tasks. We find that torus layout
significantly outperformed non-torus for cluster identification
tasks in terms of improvement in error by 62.7% and time by
32.3%.
The full study material, illustrative examples of torus network

visualisations based on pairwise gradient descent, and evaluation
results are available online: https://observablehq.com/@kun-ting/
its-a-wrap.

2 BACKGROUND

Toroidal Layouts: Toroidal embeddings of graphs have long been
considered as an interesting problem for study by graph theorists
and mathematicians who are interested in their topological prop-
erties. These embeddings are of particular interest for these spe-
cialists as certain non-planar graphs can be embedded without link
crossings on the surface of a torus. Combinatorial algorithms for
toroidal embeddings have been developed [23] and adaptations of
force-directed layout suggested [22], but until now, to the best of
our knowledge, the only attempt to evaluate the utility of toroidal
layout for visualisation was reported recently by Chen et al. [8].

Chen et al. [8] evaluate the readability of toroidal embeddings of
small graphs (≤ 15 nodes, ≤ 36 links) compared with a traditional
non-toroidal view, with and without giving participants the ability
to interactively pan the viewport by dragging with the mouse.
They tested basic link-following tasks (identify neighbours/find
the shortest path) and feature identification tasks (estimate the
number of nodes or links). Interactive panning, by allowing users
to choose a view that centres the features that they are interested
in, turned out to be a key feature. They found that without panning
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toroidal views were more difficult to use for these tasks than flat
(unwrapped) views, but with panning they were similarly readable.

There were two key limitations of the work by Chen et al. First,
the small graphs tested are not really representative of the kind of
real-world networks of interest in many domains, such as biology.
Second, they presented an automatic layout algorithm based on
a stress-minimisation approach, but admitted that it could easily
become stuck in local minima of the stress function, corresponding
to a poor choice of link wrapping across the torus surface. Therefore,
the layouts tested in the study involved human-guidance of the
algorithm. However, such an interaction would not scale to larger,
real-world networks.
Clustered Network Layout: Note that to visualise high-level
network structures, there are techniques which explicitly encode
groups or clustering information in visualisations [9, 16, 19, 28],
or evaluations of task-performance for such group-level visuali-
sations [32, 40, 43]. These algorithms rely on pre-identified clus-
ter information—either from categorical variables within the data
or pre-computed community detection—to highlight the cluster
boundaries via layout or visual cues. However, we do not require
knowledge of clusters and we do not specifically optimise the graph
layout based on clustering information. Instead, our approach, like
multidimensional scaling and force-directed graph-layout more
generally, implicitly groups nodes by minimising a cost function
over difference between ideal graph theoretic distances and actual
node separation in the drawing [17].
Automatic Layout Algorithms:Many visualisations rely on solv-
ing optimisation problems to generate a readable layout that re-
veals meaningful patterns in data. For example, force-directed al-
gorithms seek to optimise node-placement to support perception
of clusters [13, 14, 27], paths [47], and spatial distances between
nodes [7, 10]. The precise goal of the optimisation and the quality
of its solution determine how well we can perceive patterns in
the resulting visualisation and understand the data. Unfortunately,
force-directed placement is a non-trivial optimisation problem, i.e.,
it is extremely difficult to find a global optimum with respect to
the layout goals, and so imperfect heuristics must be used and the
results are often sub-optimal. Furthermore, for larger and denser
networks even the best force-directed approaches typically produce
“hairball" diagrams with little visible structure [30].
Aesthetics Metrics: It is typical in network visualization to evalu-
ate the quality of network layout using metrics that model aesthetic
and readability requirements. For example, fewer crossings and
greater incidence angle have been shown to improve network path
following tasks [21, 35, 37, 46]. We use graph aesthetics measures
to evaluate our automatic algorithm, optimizing for cluster discrim-
ination.

3 TWO ALGORITHMS IMPROVING TORUS

LAYOUTS

This section introduces our algorithm for drawing an arbitrary
network over a 2D torus topology. Similar to Chen et al. [8], our
torus-based node-link diagrams are based on the approach of cut-
ting open a torus with two cuts, resulting in a rectangular layout
with links wrapping around in north-south and east-west fashion.
This topology gives the layout algorithm additional options to route

links across the boundaries, reducing crossings, providing more
uniform link length and increasing node-link angular resolution.
We introduce a toroidal layout algorithm that solves a key limita-
tion of the toroidal layout algorithm proposed in Chen et al. [8]
which could become stuck in local minima (as shown in Fig. 6(a))
and thus which often required manual intervention to guide the
algorithm to find a reasonable layout. Our new layout algorithm
is completely autonomous. We use this algorithm to find layouts
that consistently yield better graph aesthetics: fewer crossings, less
stress, greater incidence angle, and greater cluster distance (Sect. 4).
To better discriminate clusters, we also propose a novel algorithm -
finding the best pan. These two algorithms improve toroidal layouts
such that they have a better separation of clusters, thereby sup-
ports cluster understanding tasks identified through our empirical
analysis (Sect. 4) and controlled user study (Sect. 5).

Following Chen et al. [8], our layout algorithm finds node po-
sitions of each pair of nodes in a 3×3 repeated tiling. We develop
an iterative algorithm which seeks to minimise stress of the layout
across the surface of the torus. However, while Chen et al. move
all pairs of vertices at each iteration and also need a good initiali-
sation to find a suitable torus wrapping, our approach randomly
moves a single pair of vertices at a time. In our imperical testing (see
Sect. 4.2), we find that this stochastic approach avoids the algorithm
getting stuck prematurely in local minima of the stress function
and leads autonomously to a high-quality torus layout without the
need of a good initial state.

Figure 3: To compute a toroidal layout, we consider gradi-

ent descent contribution to the reduction of stress between

a node 𝑋𝑢 with respect to another node 𝑋𝑣 in nine possible

adjacencies.

In this paper, we refer to the algorithm of Chen et al. asAll-Pairs.
Our new algorithm is named Pairwise, given that it minimises the
stress function by moving a single pair of nodes at a time using
gradient descent. The idea to randomly select and move a single
pair of nodes at a time is inspired by an approach suggested for
general (non-toroidal) stress-minimising graph layout by Zheng et
al. [47].

The key component to adapting a gradient-descent layout ap-
proach (such as stress minimisation) to a 2D torus layout, is to
consider the nine different possible choices for wrapping each link,
as shown in Fig. 3. We find that the Pairwise approach works par-
ticularly well for toroidal layout because at each iteration, as well
as optimising stress for a single link, we can choose the optimal link
wrapping configuration for that link. In the All-Pairs approach,
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(a) No pan (b) Best horizontal pan (c) Best vertical pan (d) Best pan in both horizontal and
vertical directions

Figure 4: Example of automatic panning of toroidal layouts of a network with 126 nodes and 2496 links from Small+Hard

(described in Sect. 4.1 and Fig. 7): (a) Original toroidal layout without auto pan requires a user to pan to navigate the network;

(b-c) Either horizontal or vertical pan reduces link wrappings across the edges of the display; (d) Best pan in both horizontal

and vertical directions minimises the number of link wrappings and better reveals 5 main clusters.

selecting the wrapping configuration for all links at once was the
source of significant instability.

3.1 Pairwise Gradient Descent

Force-directed methods are the most commonly-used layout algo-
rithms for general purpose graph visualisation. These methods find
a layout by minimising an objective function, such as the standard
stress function, based on differences between ideal and the actual
distances in a low-dimensional coordinate system [7, 10, 11, 47]. We
adapt the stress function for 2D toroidally-wrapped topology. We
consider the positions of each pair of nodes in a 3× 3 repeated tiling,
with equal square cell size as shown in Fig. 3, which is the length
of each square tile. Each node is considered to have nine positions,
with the same offset position within every cell. Like Chen et al., for
each pair of nodes, we compute the gradient information across the
nine possible ways to consider their adjacency. Thus, we have the
following definitions for stress for conventional unwrapped graphs
NoTorus, and then for toroidal wrapped graphs Torus. Given a
graph 𝐺 with nodes 𝑉 , we define:

stress =


∑
(𝑢,𝑣) ∈𝑉×𝑉 ,𝑢≠𝑣

(𝐿×𝐷𝑢𝑣−𝑑𝑢𝑣 )2
(𝐿×𝐷𝑢𝑣 )2 NoTorus∑

(𝑢,𝑣) ∈𝑉×𝑉 ,𝑢≠𝑣 𝑚𝑖𝑛𝑤∈𝑊
(𝐿×𝐷𝑢𝑣−𝑑𝑢𝑣𝑤 )2
(𝐿×𝐷𝑢𝑣 )2 Torus

(1)
The constant 𝐿 is selected proportionally to cell size and the graph
diameter, i.e., the longest of the shortest-paths of 𝐺 , as defined
in Algorithm 1. For a pair of nodes (𝑢, 𝑣), 𝑑𝑢𝑣 is the Euclidean
distance between 𝑢 and 𝑣 , 𝐷𝑢𝑣 is the shortest graph-theoretic path
length between them. In Torus, 𝑤 ∈ {1 . . . 9} selects one of the
nine possible adjacencies which informs the wrapping as described
previously, such that each 𝑑𝑢𝑣𝑤 is the actual (Euclidean) distance of
(𝑢, 𝑣) between the centre cell and adjacent cell𝑤 . For bothNoTorus
and Torus, the term 1

𝐿×𝐷2
𝑢𝑣

is used to penalise long-range attraction.
A gradient-descent approach to reducing the stress function

uses the gradient information for this function in a given graph
configuration to choose descent vectors, or directions by which
to move the nodes to reduce the overall stress function, as per
[14]. For Torus, for a given pair of nodes we choose the adjacency
across cells which contributes to the greatest reduction in stress as

the descent vector by which the nodes will be moved. In Chen et
al. such descent vectors were computed simultaneously across all
pairs of nodes, before moving all nodes according to the computed
vectors. In this paper, however, we move just a pair of nodes at a
time and follow an annealing schedule to enforce convergence.

A summary of our annealing schedule is shown in Equation 2,
where 𝜂 (𝑡) is a time-dependent scale factor applied to descent
vectors before moving nodes accordingly.

𝜂 (t) =


𝑚𝑖𝑛 (1, 𝐷
2
𝑚𝑎𝑥

𝐷2
𝑢𝑣

𝑒−𝜆𝑡 ) for 𝑡 ≤ 𝜏

𝑚𝑖𝑛 (1, 𝐷
2
𝑚𝑖𝑛

𝐷2
𝑢𝑣

1
1+𝜆𝑡 ) for 𝜏 < 𝑡 ≤ 𝜏𝑚𝑎𝑥

(2)

We follow [47] in choosing an exponential decay schedule for a fixed
number of iterations 𝜏 . Starting from the next iteration after 𝜏 , the
algorithm uses a 1

𝑡 schedule to converge to a stable configuration.
The annealing schedule begins with a maximum step size, 1 at first
iteration 𝑡 = 0. This avoids local minima, as reported in [47]. 𝜆 is a
decay constant determined by a given parameter 𝜖 such that the
schedule’s step size at iteration 𝜏 is constrained from above by 𝜖 ,
i.e., 𝐷2

𝑚𝑎𝑥𝑒
−𝜆𝜏 = 𝐷2

𝑚𝑖𝑛
𝜖 .

The parameter that determines howwell a toroidal layout spreads
out clusters of a network is (1) 𝜏 which controls when to switch
from exponential schedule to the 1

𝑡 schedule (Equation 2), (2) 𝜖
which determines the constraint of 𝜂 (𝑡). We experimented with a
variety of parameter 𝜏 and 𝜖 for the step size schedule 𝜂 (𝑡) as shown
in Fig. 5 and section 1 of the supplementary file. For 𝜏 , we fixed
𝜖 = 0.1while varying 𝜏 in a range of 20 and 120. We used the graphs
from Small-Hard graph corpus described in Sect. 4.1 and Fig. 7. We
find increasing 𝜏 led to better separation of clusters and less stress,
as shown in Fig. 5(a, c). For 𝜖 , we then fixed 𝜏 = 80 while varying
𝜖 from 0.05 to 0.3. The results indicate that 𝜏 greater than 0.2 is a
poor choice and thus it has worse cluster separation and stress, as
shown in Fig. 5(b, d). We therefore set 𝜏 = 80 and 𝜖 = 0.1 for the
exponential schedule. For 1

𝑡 schedule we set 𝜖 = 0.001. This gives
smaller step size and thus the layout algorithm always converges.

The stopping criterion is set to a maximum pairwise movement
𝛿 < 0.03 or a maximum of 𝜏𝑚𝑎𝑥 = 200 iterations , whichever comes
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(a) (b) (c) (d)

Figure 5: The cluster distance and stress of networks from Small+Hard (Sect. 4.1) with 20 runs when varying parameters 𝜏

and 𝜖 on Equation 2. A larger value of 𝜏 gave greater cluster distance (a) and less stress (c) with 𝜖 = 0.1. There was not much

improvement for either 𝜏 > 80 (a,c) or 𝜖 > 0.2 (b,d). Therefore we chose 𝜏 = 80 and 𝜖 = 0.1 for our Pairwise layout algorithm.

first. Algorithm 1 gives pseudocode for this process 1. Fig. 6(b,d)
show layout examples of Pairwise-NoTorus and Torus at conver-
gence.

Data: 𝑔𝑟𝑎𝑝ℎ 𝐺 = (𝑉 , 𝐸), 𝑤𝑟𝑎𝑝𝑝𝑖𝑛𝑔𝑊 = 3 × 3 𝑡𝑖𝑙𝑒𝑠
Result: 𝐺𝑟𝑎𝑝ℎ 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 𝑜𝑛 𝑎 2𝐷 𝑝𝑙𝑎𝑛𝑒

𝐿 ← 𝐶𝑒𝑙𝑙 𝑆𝑖𝑧𝑒
𝑚𝑖𝑛 (𝐺𝑟𝑎𝑝ℎ 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 , 2)+ 1 ;

𝑋 ← |𝑉 | × |𝑉 | × 2 node position matrix;
𝐷 ← ShortestPathsMatrix(G);
for 𝜂 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑎𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑖𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 do

for each 𝑢, 𝑣 ∈ 𝑉 in random order do
if wrapped then

𝑋 ′𝑢𝑣 ← set of 9 possible vectors from 𝑢 to 𝑣
across the cells of𝑊 ;

𝑑𝑢𝑣 ← euclidean lengths of each 𝑋 ′𝑢𝑣 ;

𝑅 ← (𝑚𝑖𝑛𝑤∈𝑊
(𝐿×𝐷𝑢𝑣−(𝑑𝑢𝑣𝑤 )2

2 )
−−−−→
𝑋 ′𝑢𝑣𝑤
𝑑𝑢𝑣𝑤

;
else

𝑅 ← (𝐿×𝐷𝑢𝑣−𝑑𝑢𝑣 )2
2

−−→
𝑋𝑢𝑣

𝑑𝑢𝑣
;

end

𝑋𝑢 ← 𝑋𝑢 − 𝜂𝑅;
𝑋𝑣 ← 𝑋𝑣 + 𝜂𝑅;
if𝑤𝑟𝑎𝑝𝑝𝑒𝑑 then 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 𝑋𝑢 , 𝑋𝑣 𝑏𝑎𝑐𝑘 𝑡𝑜 𝑐𝑒𝑛𝑡𝑟𝑒 𝑐𝑒𝑙𝑙 ;

end

end

Algorithm 1: Pairwise gradient descent layout algorithm,
which provides a Torus layout when wrapped is true, or a
NoTorus layout when wrapped is false.

3.2 Computational Complexity

The time complexity of each iteration of Pairwise and All-Pairs
stress minimisation is O(|𝑉 |2) where 𝑉 is a set of vertices. There
is a constant factor𝑊 due to torus adjacencies which does make
our reported run-times uniformly slower than non-torus layout.

1The detailed pseudocode to our method is available from https://github.com/Kun-
Ting/its-a-wrap

The space complexity of all the methods are the same, i.e., O(|𝑉 |2)
Pairwise-Torus’s asymptotic computation time complexity is the
same as traditional force-directed layout so we would expect similar
scalability (subject to the constant factor𝑊 ). Further improvement
may be possible using multilevel spatial decomposition methods,
e.g. [38, 44].

3.3 Automatic panning

As investigated in [8], additional context and interactive panning
have been shown to improve understanding of wrapped visuali-
sations. The qualitative feedback in that study revealed that repe-
tition of networks in adjacent cells is not practical for displaying
large graphs. Rather, interactive panning was found to be highly-
beneficial in helping study participants to pan, such that links of
interest are not wrapped. However, we can greatly support this
process by automatically panning to minimise the number of links
that are split across viewport boundaries.

To perform automatic panning of a given layout (e.g. as deter-
mined by the algorithm given in Sect. 3.1, we take a sweepline
approach [41] to search for pan positions which lead to the least
number and severity of split links, horizontally and vertically. A
given layout provides a fixed set of node positions relative to a
viewport. A “pan” of a Torus layout, involves translating all node
positions uniformly, except where a node would move outside the
viewport, it is wrapped to the other side of the viewport, top-to-
bottom or left-to-right. For a given layout of a graph with |𝑉 | nodes,
the node positions left-to-right define an ordering over the nodes,
and the positions top-to-bottom provide a second ordering. The
set of links that are wrapped across viewport boundaries 𝐸𝑤𝑟 ⊆ 𝐸

is constant under translation of the nodes, until the translation is
sufficiently large that a node must be wrapped around. Thus, in
each axis (horizontal and vertical) there are precisely |𝑉 | distinct
translations that must be considered in order to examine all sets
of possible wrapped links for a given layout. We can examine each
of these sets to determine which induces the lowest wrapping cost,
defined as 3, where 𝑑𝑢𝑣 is the Euclidean distance between 𝑢 and 𝑣
connected by a link 𝑒:

wrapcost (𝐸𝑤𝑟 ) =
∑

𝑒∈𝐸𝑤𝑟

1
𝑑𝑢𝑣

(3)

https://github.com/Kun-Ting/its-a-wrap
https://github.com/Kun-Ting/its-a-wrap
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Algorithm 2 details the steps of this procedure. The runtime
complexity of Automatic Panning is O(|V|log|V|+|E|) due to the
need to sort node positions and examine all links.

Data: Node position vector 𝑋 with position (𝑥, 𝑦) ∈ 𝑋 for each
node, for a torus layout of a graph𝐺 from Algorithm 1.
Fig. 4(a) shows an example.

Result: Torus layout with minimum link wrappings on the
boundary and less disconnected clusters centred within the
viewport

Horizontal Sweep (result shown in Fig. 4(b)):
(1) Sort nodes by increasing (𝑥, _) ∈ 𝑋 and initialise sweep-line
positions 𝑆 with the mid-points 𝑠𝑖 of all adjacent 𝑥𝑖 , 𝑥 (𝑖+1) ;

(2) For each sweep line position 𝑠𝑖 ∈ 𝑆 , maintain a set of open links.
Assuming we sweep left-to-right, at each 𝑠𝑖 we add to 𝐸𝑤𝑟 the
links outgoing from the right side of node 𝑖 and remove any links
incoming to the left-side of 𝑖 . If wrapcost (𝐸𝑤𝑟 ) (Equation 3) of
open links is smaller than𝑚𝑖𝑛𝐶𝑜𝑠𝑡 , take this as the new
𝑚𝑖𝑛𝐶𝑜𝑠𝑡 and set𝑚𝑖𝑛𝑋 to the current sweep line position 𝑠𝑖 ;

Vertical Sweep (result shown in Fig. 4(c)):
(3) Repeat step 1 and 2 for all 𝑦-positions (_, 𝑦) ∈ 𝑋 . Therefore,
𝑚𝑖𝑛𝑌 is the sweep line position with minimum cost.

Apply optimal pan and centre within viewport

(result shown in Fig. 4(d)):
(4) Translate all node positions based on𝑚𝑖𝑛𝑋 ,𝑚𝑖𝑛𝑌 .
(5) Centre the layout such that the centre 𝑥-position of the left-most
and the right-most nodes is at the centre of the cell; and similar to
centre vertically.

Algorithm 2: Auto Panning Procedure

4 ALGORITHM EVALUATION

In this section, we compare two layout conditions: torus (Torus)
and traditional 2D planes (NoTorus) for both our proposed algo-
rithm Pairwise (Algorithm 1) and the All-Pairs algorithm used
in [8] against a large corpus of 200 graphs. We show that Pair-
wise has convergence and run-time performance benefits over its
predecessor All-Pairs. We assess layout quality using established
graph aesthetics measures and a novel cluster readability metric,
cluster distance, measuring visual distance between boundaries of
clusters in a given layout, finding that Pairwise toroidal layout
algorithm outperforms either Pairwise non-torus or All-Pairs
layout algorithms.

In order to evaluate how well a layout method separates nodes
and clusters, we look at graphs with community structures [29, 39].
We control for modularity, a metric for graph theoretic community
structure [31]. A graph with high modularity indicates that the
cluster structure is more distinct, as there are more links within
each cluster than between clusters [15, 31].

We compared means of runtime, stress, crossings, incidence an-
gle, and cluster distance of four different layout methods, i.e., Pair-
wise-Torus, Pairwise-NoTorus, All-Pairs-Torus and All-Pairs-
NoTorus, using Friedman’s non-parametric test and Nemenyi’s
post-hoc pairwise comparison, as they did not follow normal distri-
bution. We report significant differences under 95% confidence.

4.1 Graph Corpus

The graphs in our sample corpus were generated using algorithms
designed to simulate real-world community structures in graphs [6,

15], using generators fromNetworkX [34].We generated 200 graphs,
grouped by two variables: graph modularity [31] (5 levels from low
to high: 0.25, 0.3, 0.35, 0.4, 0.45) and graph size (2 levels: Small:
68-80 nodes, 710-925 links, 3-8 clusters, and Large: 126-134 nodes,
2310-2590 links, 3-8 clusters). This gives us 10 classes. For all classes,
the graph density is calculated by the ratio of the number links of
the graph to the maximum number of possible links ( 2×|𝐸 |

|𝑉 |×( |𝑉 |−1) ).
This density is fixed at a range of 0.3±0.01.

We use a standard Random Partition Network model [15] and
Gaussian Random Partition model [6] to generate our graph corpus.
This gives us graphs with clustering information based on the
desired range of modularity, density and size. We exclude graphs
whoseminimummodularity of an individual cluster is ≤ 0.23, which
we found was the minimum to provide visible community structure
[15].

4.2 Runtime comparison

We compare runtime performance of Pairwise algorithm with All-
Pairs [8]. We implemented the Pairwise algorithm in JavaScript
and D3 [5], and implemented All-Pairs as per [8] inWebCola[1].
We ran both algorithms with networks from our graph corpus as
described in Sect. 4.1. For each graph, we generated network layouts
with 20 random initial node positions controlled by seed within
a 1×1 square at the centre for each graph. The configuration of
unit link length, stopping criteria, and maximum number of iter-
ations are same for each technique and described in Sect. 3. We
record the time of each technique using Google Chrome browser
(version 80), running on an Intel i7-7800X (3.5GHz) CPU and 32GB
of RAM. Overall, Fig. 7 indicates that Pairwise-Torusis signifi-
cantly faster (p=0.037) to converge than All-Pairs-Torus by 62%
for Small+Easy. Graphics of statistical results and boxplots of run-
time comparison are available in Sect. 2.2 of the supplementary
file.

Fig.6(a) shows mean stress over time of an example graph for
Large+Hardwith 20 runs. An example graph for Large+Easy is in
Sect. 2.1 of the supplementary file. The result shows that Pairwise
avoids the algorithm getting stuck in local minima of the stress
function as opposed to All-Pairs. Furthermore, Pairwise-Torus
reaches lower stress levels than All-Pairs-Torus at convergence.
While the convergence time is affected by stopping conditions,
in our evaluation, we used the same convergence threshold and
maximum number of iterations for all methods. However, step size
attenuation also affects convergence time. It is computed differently
in All-Pairs torus, which is based on gradient contribution of all
pairs nodes as in [14] and Pairwise, which we chose 80 iterations as
the threshold 𝜏 (Equation 2) between exponential and convergence
schedule based on experimental results. Experimentally, we found
a larger 𝜏 led to longer time to converge, but it did not give much
improvement in terms of cluster separation, as shown in Fig. 5 and
Sect. 1 of the supplementary file. Fig. 6(b-d) show Pairwise-Torus
generates higher-quality layouts than either Pairwise-NoTorus or
All-Pairs methods at convergence.

4.3 Quality comparison

Following Chen et al. [8] we first used a set of layout aesthetic
quality metrics to compare NoTorus and Torus using Pairwise
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(a) Stress Against Time (b) Pairwise NoTorus (c) All-Pairs Torus (d) Pairwise Torus

Figure 6: (a) Mean stress over time of 20 runs of torus and standard node-link for both Pairwise andAll-Pairs algorithms for

a network with 130 nodes, 2504 links from Large+Hard (Sect. 4.1). (b-d) show the network layouts at convergence. Pairwise-

Torus reached lower stress level, was faster to converge, and better revealed network clusters than All-Pairs-Torus.

Graph Set

Number 

Graphs Nodes Links

Number 

Clusters

Graph 

Density Topology

Layout 

Method Cluster Distance Stress Time (sec) Crossings

Incidence 

Angle

20 72.1 785.1 4.6 0.3 No Torus All Pairs 37.7 399 0.16 24702 0.957

No Torus Pairwise 42.9 393.9 0.08 24376 0.958

Torus All Pairs -10.7 386 22.4 20635 0.951

(SMALL-EASY) Torus Pairwise 56.1 274.3 8.5 14075 0.946

20 129.1 2470.3 4.4 0.3 No Torus All Pairs 29 1412.2 0.5 277356 0.978

No Torus Pairwise 33.7 1408.9 0.3 276040 0.979

Torus All Pairs -24.4 1328.5 85.3 209443 0.975

(LARGE-EASY) Torus Pairwise 47 1047.1 64.5 158202 0.975

20 71.5 774.6 4.7 0.3 No Torus All Pairs 11.1 427.9 0.16 29555 0.959

No Torus Pairwise 14.3 424.6 0.08 29343 0.959

Torus All Pairs -43 422.9 23.2 23984 0.952

(SMALL-HARD) Torus Pairwise 34.3 318.1 8.4 14751 0.944

20 129.1 2535.4 5.3 0.3 No Torus All Pairs 3.1 1545.4 0.5 363685 0.979

No Torus Pairwise 3.3 1543.4 0.3 361353 0.98

Torus All Pairs -67.4 1529.1 86.4 268336 0.975

(LARGE-HARD) Torus Pairwise 28.6 1220.7 65.6 179452 0.973

Clustered Small 

Modularity=0.4

Clustered Large 

Modularity=0.4

Clustered Small 

Modularity=0.3

Clustered Large 

Modularity=0.3

Figure 7: Average properties of 80 randompartition networks and graph aesthetics results of 20 runs of each network rendered

using Torus, NoTorus for both Pairwise and All-Pairs algorithms when varying modularity and size.

(a) Statistical results (b) Cluster distance

Figure 8: Statistical results and box plots of cluster distance of 200 networks laid out using Torus and NoTorus for both

Pairwise and All-Pairs algorithms when varying graph modularity between 0.25 and 0.45 for Small and Large networks.
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and All-Pairs. However, we are more interested in whether the
additional spreading afforded by torus-based layout is better at
showing clusters and so revealing the network structure. This was
not considered by Chen et al [8].

4.3.1 Established graph aesthetics metrics . The metrics— stress,
minimum incidence angle, and number of line crossings—have been
shown important for user performance in readability tasks in the
past [36, 45]. Graphics of statistical results and boxplots of stress,
incidence angle, and crossings are summarised in Sect. 2.3 of the
supplementary file.
Stress—measures how well the layout captures the structure in the
underlying network [10]. Graphs with lower stress have been found
to be more preferred by users [12]. We calculate stress as per Equa-
tion 1. As shown in Fig. 6 and Fig. 7, Pairwise-Torus achieves
significantly lower stress (p<0.001) than Pairwise-NoTorus, All-
Pairs-NoTorus for Small+Easy, Large+Easy, Small+Hard, and
Large+Hard. Pairwise-Torus achieves significantly lower stress
(p<0.001) than All-Pairs-Torus for Small+Easy, Small+Hard,
and Large+Hard. For unwrapped layout, we found Pairwise-
NoTorus achieves significantly lower stress (p=0.0135) than All-
Pairs-NoTorus for Small+Easy.
Incidence Angle—Maximising the minimum angle of incidence
between links entering a node gives better readability of network
connectivity. Following Purchase [36] our metric for incidence an-
gle measures deviation of minimum-incidence angle for each node
from the ideal maximum for that node’s degree 𝜃𝑣 = 360◦/degree(𝑣).
Smaller deviation from this ideal is better. Fig. 7 shows that Pair-
wise-Torus achieves significantly smaller deviation (p<0.001) than
Pairwise-NoTorus for Small+Easy, Large+Easy, Small+Hard,
and Large+Hard. Pairwise-Torus achieves significantly smaller
deviation than All-Pairs-NoTorus for Small+Easy (p<0.001),
Large+Easy (p=0.006), Small+Hard (p<0.001) , and Large+Hard
(p<0.001).

1
|𝑉 |

∑
𝑣∈𝑉

|𝜃𝑣 −min𝜃𝑣 |
𝜃𝑣

(4)

Line Crossings—The negative effect of line crossings on readabil-
ity of graphs is well studied in [20, 36]. Fig. 7 shows that Pairwise-
Torus achieves significantly (p<0.001) fewer crossings than Pair-
wise-NoTorus andAll-Pairs-NoTorus for Small+Easy, Large+Easy,
Small+Hard, and Large+Hard. Furthermore, Pairwise-Torus
significantly (p=0.0366) achieves fewer crossings than All-Pairs-
Torus for Small+Easy.

In accord with Chen et al. [8]’s findings for small networks,
our results show that torus-based layout have clear benefits over
traditional node link diagrams for larger networks at least for these
metrics.

4.3.2 New cluster readability metrics—cluster distance. We use a
new metric for cluster readability: cluster distance to measure how
well a layout algorithm is able to separate clusters. For a given lay-
out, for all pairs of clusters whose convex hulls are not overlapping
we compute:
Minimum separation between convex hulls—measures space
between non-overlapping clusters. A larger value indicates more
distance between the boundaries of clusters in a given layout. For
torus, we first identify a convex polygon in a 3 × 3 torus coordinate

WrapCost Wrapping
Links

Time (sec)

Auto Pan No Pan Best Pan No Pan Best Pan Best Pan
Small+Easy 4.64 2.41 522.7 324.7 0.04
Small+Hard 4.28 2.49 514.5 354 0.04

Table 1: Automatic panning results: mean wrapCost, num-

ber ofwrapping links across the boundary and running time

of 20 random runs for Small graphs at high (0.4) and low

(0.3)modularity (with layout pre-computed byAlgorithm 1);

graph metrics as shown in Fig. 7.

for each cluster. We then use the Gilbert–Johnson–Keerthi (GJK)
algorithm [33] to determine the minimum distance between convex
polygons.

Then, for all pairs of clusters that are overlapping, we compute:
Minimum penetration depth between convex hulls—To mea-
sure the minimum translation vector required to separate the con-
vex hulls of the cluster pair, as a measure of cluster overlap. A larger
value indicates more severely overlapping clusters. We use the Ex-
panding Polytope Algorithm (EPA) which is based on Minkowski
sum to compute the penetration depth [42].

Then, for each pair of clusters we define cluster distance as the
negative minimum penetration depth if they are overlapping, or the
minimum separation between convex hulls if they are not overlap-
ping. Across all pairs we take the average minimum cluster distance
as a metric of cluster separatedness across the whole graph.

Graphics of statistical results and box plots of cluster distance
are summarised in Fig. 8. Overall, we found:
• Pairwise-Torus significantly outperformed All-Pairs- No-
Torus, All-Pairs-Torus in cluster distance for both low and
high modularity at 0.25, 0.3, 0.35, and 0.4 for both Small and
Large.
• Pairwise-Torus outperformed Pairwise-NoTorus in clus-
ter distance for modularity at 0.25, 0.3 for Small and Large.
• Wealso found Pairwise-NoTorus significantly outperformed
All-Pairs-NoTorus for cluster distance under modularity
at 0.4 for Small and Large.
• As Pairwise significantly outperformed All-Pairs, we used
Pairwise to perform user evaluation forNoTorus andTorus
in the next section.

4.4 Automatic panning results

We conducted a small empirical analysis of the Auto Pan Algorithm
2 in terms of number of wrapped links. Results are summarised in
Table 1. Automatic panning significantly improves the number of
wrapped links, while the wrapcost penalty prefers wrapping long
links over short links, which tends to keep clusters unwrapped. The
difference is visible in Figure 4.

5 USER EVALUATION

The previous section demonstrated the improvement provided by
our new algorithm Pairwise with automatic panning, in terms of
graph aesthetics and cluster readability metrics. In this section, we
investigate if our torus drawings with automatic panning are more
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effective for people to use than standard unwrapped representations
for high-level network topology analysis tasks.

Discerning high-level structure, such as clusters, is an impor-
tant task in many domains, e.g., community structure in social
networks[31], self-organizing maps of documents[24]. Visual clus-
ter analysis is an important application of network visualisation.
For example, an analyst may need to visually verify whether the
output of an automatic cluster labelling algorithmmakes sense with
respect to the graph structure. For this task, they want a layout
algorithm that displays the connectivity structure of the graph as
clearly as possible. However, clutter makes cluster disambiguation
difficult with standard node-link diagrams. The hypothesis that
we test in our user study is whether the additional spreading af-
forded by toroidal layout in terms of the new cluster separation
metric (Sect. 4.3.2) also leads to better human perception of clus-
ters. We do not use the All-pairs-Torus algorithm [8] in the user
study because the results of the empirical experiments (Fig. 7, Fig. 8)
overwhelmingly demonstrate that the new Pairwise algorithm is
superior.

The particular task that we focus on in this paper is the inspection
of community structure, i.e., cluster identification. This study is
different from Chen et al.’s study with small graphs (≤ 15 nodes, ≤
36 links) [8]. They did not test whether torus-based layout might
also better display high-level network structure like clusters. Our
study graphs (Sect. 5.3) are 4.7 to 8.6 times larger in the number of
nodes, 21 to 68 times larger in the number of links than Chen et al.
In summary, we are interested in answering the following research
question:
RQ: Do toroidal layouts with interactive wrapping provide more
benefit to perception than a standard unwrapped representation
for cluster identification?

5.1 Techniques & Setup

The techniques in our study are NoTorus and Torus generated
using our new Pairwise algorithm as detailed in Sect. 3. In the
study, each trial starts with automatic panning for Torus. We did
not show any cluster colours in this study to not hint towards any
graph structure. Interactive panning using the mouse is enabled
only in the Torus condition. A user can drag the visualisation such
that when the view is panned off one side of the display, it reappears
on the opposite side.

5.2 Tasks & Dependent Variables

For our study, we selected two representative network visualisa-
tion tasks, inspired by existing task taxonomies [25, 39], and that
involve the understanding of clusters. For each task, we record
task-completion time (Time), task-error (Error), and subjective
user confidence in using for the task in terms of rank (1 or 2)
(Confidence). We record pan distance as the overall distance the
participant moves the mouse for each trial. We record user ranking
for learnability for cluster related tasks in general (Learnability)
and overall preference (Overall).

Our tasks are as follows:
• ClusterNumber: Identify thenumber of clusters (Fig. 9(a,

b)) Participants are required to count the number of clusters they
can find in the image. Participants are provided radio buttons to

(a) Node Cluster NoTorus (b) Node Cluster Torus

(c) Node Cluster NoTorus (d) Node Cluster Torus

Figure 9: Example of ClusterNumber tasks (a,b) andNode

Cluster tasks (c,d) for Large+Hard: Modularity 0.3, 130

nodes, 2575 links, 5 clusters (a,b); Modularity 0.3, 126 nodes,

2496 links, 5 clusters (c,d)

answer 1 to 10. We calculate Error as the absolute difference
between the correct answer and the user’s response, divided by
the correct answer.
• Node Cluster: Do the two red nodes belong to the same

cluster (Fig. 9(c, d))?We record participants’ responses through
multiple-choice questions with the values yes, no, and not sure as
options. Error is binary with not-sure counting as error.

5.3 Graph Structure

To evaluate effectiveness of toroidal drawings for cluster identifi-
cation tasks, we used graphs from our graph corpus in Sect. 4.1,
with two levels of difficulty (Easy: modularity=0.4, Hard: modu-
larity=0.3) and two levels of graph size (Small and Large), whose
graph metrics are summarised in Fig. 7. We name these four groups:
Small+Easy, Large+Easy, Small+Hard, and Large+Hard. In
each group, we randomly selected 5 graphs for trials for each task.
The number of clusters for Cluster Number ranged between 4
and 7. For Node Cluster, the number of clusters ranged between
5 and 7, as we found in pilot studies that fewer than five clusters is
too easy for Node Cluster. We ran the Pairwise layout algorithm
20 times for a chosen graph for both NoTorus and Torus. We then
selected one layout at random and used it for both NoTorus and
Torus for each study trial.

5.4 Hypotheses

Our hypotheses were pre-registered with the Open Science Foun-
dation: https://osf.io/7vbr4.

https://osf.io/7vbr4
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For Cluster Number:

• H1: Torus has better task effectiveness (in terms of time and
error) than NoTorus independent of difficulty levels.
• H2: For Easy graphs, NoTorus has better task effectiveness (in
terms of time and error) than Torus (requires certain panning
and mental wrapping).
• H3: For Hard graphs, Torus has better task effectiveness (in
terms of time and error) than NoTorus.
• H4: Participants will report more confidence in Torus than No-
Torus.

For Node Cluster:

• H5: Torus has better task effectiveness (in terms of time and
error) than NoTorus independent of difficulty levels.
• H6: Torus has better task effectiveness (in terms of time and
error) than NoTorus for both Easy and Hard tasks.
• H7: Participants will report more confidence in using Torus than
NoTorus.

For participant preference

• P1: Overall, participants prefer Torus over NoTorus.

5.5 Experimental Design

We use a within subject design with 2 techniques (Torus,NoTorus)
× 2 tasks (Cluster Number, Node Cluster) × 2 level of difficulty
(Easy, Hard) × 2 sizes (Small, Large) × 5 recorded repeats. This
leaves us with a total of 80 recorded trials per participant. We
blocked the study by tasks, i.e., participants would do both tech-
niques with the same task before moving to the second task. For
each task block, we counterbalanced the order of the techniques
using a full-factorial design. The order of each level of difficulty and
size in each technique was the same: Small+Easy→Large+Easy→
Small+Hard→Large+Hard. The order of trials for each technique
within each level was randomised.

5.6 Participants and Procedures

We recruited 32 participants from local institutes through univer-
sity’s email list and snowballing. 19 were males, 13 were females.
The age of participants was between 20 and 50 (mean = 31.5). 22
people reported seldom or never using network diagrams while 10
people often used network diagrams in their work or study.

While run entirely online due to COVID-19 health-concerns, the
experimenter supervised each participant through remote video
conferencing software to give proper instructions, assure the par-
ticipants’ engagement, and help with eventual questions. The ex-
perimental software was loaded in a participant’s Google Chrome
browser. Each participant shared their screen with the experimenter.
The experimenter ensured that each participant used a monitor
with resolution no less than 1366 ×768 pixel. Each study trial used
a stimuli with a size of 650 × 650 pixels. Each trial was correctly
loaded in a participant’s browser, before the recording started. The
experimenter trained each participant to identify a cluster as a
graph structure whose links within a cluster are relatively more
than the links between clusters. Before each new task and technique,
there were 2 training trials. When a participant gave an answer in
these training trials, an image with different clusters highlighted in
different colours appeared, outlining the cluster. Participants first

had to complete all training trials correctly before proceeding to the
recorded trials. Each recorded trial had a timeout of 20 seconds to
prevent participants from trying to perform precise link counting.
For Torus technique, short animations demonstrating interactive
torus wrapping were shown.

5.7 Results

All of the participants completed the training and recorded trials.
Therefore we recorded performance for 2,560 trials. Since Error
was not normally distributed, we used Friedman’s non-parametric
test and Tukey’s posthoc multiple pairwise comparison to identify
significant differences between NoTorus and Torus. The residuals
of Timewere normally distributed, visually checked with Q-Q plots
and a histogram, supported by a Shapiro-Wilk test. The variances
of the Time were equal by Levene’s test. We therefore performed
a 3-way repeated measures ANOVA to test significant difference
in Time between NoTorus and Torus. We used paired t-test for
posthoc pairwise comparisons with p-value adjustment using Bon-
ferroni correction. Wilcoxon’s non-parametric signed rank test was
used to analyse paired significances of subjective user rank. Confi-
dence intervals indicate 95% confidence for mean values for all the
pairwise comparisons.

Overall, forCluster Number, we found the following significant
results:
• For Error, we found Torus significantly outperforming No-
Torus for technique (M(NoTorus)=.26, M(Torus)=.15)), Easy
(M(NoTorus)=.18, M(Torus)=.09)), Hard (M(NoTorus)=.33, M(
Torus)=.2)), Large (M(NoTorus)=.31, M(Torus)=.12)),
Large+Easy (M(NoTorus)=.25, M(Torus)=.1)) and Large+Hard
(M(NoTorus)=.37, M(Torus)=.15)), as shown in Fig.10(a).
• For Time, we foundNoTorus (M=13.7s) significantly outperform-
ing Torus (M=15.1s) for only Hard (Fig.10(c)).
• Participants report significantly more confidence in using Torus
than NoTorus (p<0.001) (Fig. 11).
For Node Cluster, we found the following significant results:

• For Error, Torus significantly outperformed NoTorus for tech-
nique (𝑀 (NoTorus) = .43, 𝑀 (Torus) = .16), Easy (𝑀 (NoTorus)
= .39, 𝑀 (Torus) = .05),Hard (𝑀 (NoTorus) = .47, 𝑀 (Torus) =
.28), Small (𝑀 (NoTorus) = .44, 𝑀 (Torus) = .09), Large (𝑀 (
NoTorus) = .42, 𝑀 (Torus) = .23), Small+Easy (𝑀 (NoTorus) =
.33, 𝑀 (Torus) = .03), Large+Easy (𝑀 (NoTorus) = .45, 𝑀 (
Torus) = .06) and Small+Hard (𝑀 (NoTorus) = .55, 𝑀 (Torus)
= .16), as shown in Fig. 10(b).
• Torus significantly outperformed NoTorus in time for Easy
(𝑀 (NoTorus) = 9.84𝑠, 𝑀 (Torus) = 7.22𝑠) and Large+Easy
(𝑀 (NoTorus) = 10.5𝑠, 𝑀 (Torus) = 7.1𝑠)), as shown in Fig.10(d).
• Participants report significantly more confidence in using Torus
than NoTorus (p<0.001), as shown in Fig. 11.
Overall, Torus improved task effectiveness in terms of error rate

by 42.3% on average, compared withNoTorus forCluster Number
task. ForNode Cluster task, Torus improved the task effectiveness
in terms of error rate by 62.7% and time by 32.3% on average, as op-
posed to NoTorus. Participants reported that Torus is significantly
easier to learn (Learnability) (p<0.001) than NoTorus for our
cluster related tasks. Torus was significantly preferred (Overall)
(p<0.001) over NoTorus in overall rank, as shown in Fig. 11. Based
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(a) Cluster Number error (b) Node Cluster error

(c) Cluster Number time (d) Node Cluster time

Figure 10: User evaluation results of mean error and time between NoTorus and Torus split by task, difficulty and size.

Columns of significant results are shown in white background.

Figure 11: Subjective user rank of NoTorus and Torus

on these results, for RQ we rejected hypothesis H2 and accepted
H4, H7, P1. We partially accepted H1, H3, H5 for error, and H6 for
error and time for Easy.

5.8 Qualitative User Feedback

For understanding clusters, the majority of participants mentioned
that the Torus with panning provided for less overlap between
nodes and was better spreading nodes and clusters more spatially,
thus reducing visual clutter and increasing readability. While our
automatic panning optimises the view a user sees first, interaction
further helps to find the best view possible. Some participants re-
ported that Cluster Number required more panning to identify
the graph structure. For Node Cluster, on the other side, partic-
ipants reported that they rarely used interactive panning, except
for verifying their answer. This is supported by our measurements
that Node Cluster, required less user interaction (majority less
than 1000 pixels per trial). The box plot can be found in Sect. 3.3
of the supplementary file. There are 4 participants who reported
they favoured NoTorus as it gives a full overview of the networks
and did not require to identify the same piece of cluster wrapped
around top-bottom or left-right.

5.9 Discussion

Our results indicate that NoTorus is sometimes faster than Torus
when counting the number of clusters for HARD (Fig. 10(c)), but
the error rate in the NoTorus condition was generally much higher
(Fig. 10(a)). We believe participants were sometimes faster with
NoTorus because they were simply guessing the answer. Our new
study is intended to be complementary to Chen et al. [8] by evaluat-
ing an important task not considered in their study. Since our new
layout algorithm produces high-quality torus layout with fewer
crossings, larger incidence angles and less stress, we would expect
that the results from Chen et al. for low-level connectivity under-
standing and path following tasks would also be reproducible for
larger networks using our new algorithm. However, we leave such
an evaluation to future work.

6 CONCLUSION AND FUTUREWORK

Chen et al. [8] demonstrated that when compared to traditional
layouts, torus-based node-link diagram layouts reduce the number
of link crossings, reduce stress and increase incidence angle of links
entering a node. However, their user study found no benefits of
torus-based layouts for detailed network analysis tasks with small
graphs.

We have presented a new algorithm for torus-based layout of
networks that is more robust than the previous method of Chen
et al. [8]. Furthermore, we improve the resulting layout by using a
novel algorithm that minimises the number of wrappings across
the boundary by centring elements of interest in the display.

Using this algorithm, we have investigated whether toroidal
wrapped layouts provide advantages over traditional network lay-
outs for the higher-level task of understanding network structure.
Both an analysis of graph metrics and a user study have clearly
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shown that they do: participants were able to more accurately de-
termine the number of clusters in a graph and more quickly and
accurately determine whether two nodes are in the same cluster
with the toroidal wrapped layouts. Furthermore, participants pre-
ferred the toroidal wrapped layouts. This is the first demonstration
that torus-based layouts provide real-world benefits over traditional
node-link layouts.

Our research also reveals directions for future research. While
our layout algorithm converges significantly more quickly than that
of Chen et al. [8], the need to compare 9 different alternatives for
link wrappings at each iteration means that it is still considerably
slower than the corresponding layout algorithms for traditional
node-link diagram layout. Improving its speed is a major direction
for future research.

Another future research direction is to investigate the use of
toroidal wrapped layouts to understand high-dimensional data
when using multi-dimensional scaling (MDS) [4]. Stress, as consid-
ered in Equation 1 is also used in MDS and the similarity between
MDS and graph layout algorithms has been observed before [17].
It seems very likely that toroidal wrapped layouts will also better
show clusters and high-level structure in MDS visualisations.
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