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Abstract 
In this paper we present the first naturalistic (in-situ) exploratory study seeking to apply mixed-reality 
(MR) technologies within the industrial chemical laboratory (wet lab) domain with the aim of identifying 
opportunities and challenges for such applications. This research was conducted in partnership with 
Agilent Technologies (Agilent), an industry leader in the wet lab domain, which allowed us to draw on 
domain expert knowledge of actual work practices to inform the design of our system and its subsequent 
evaluation. This naturalistic approach is in stark contrast to most existing MR research, which usually 
involves tightly controlled experimental conditions. Despite this, designing and evaluating solutions in-
situ must be explored in order to better understand how these systems succeed or fail to meet user 
requirements in an industrial environment involving actual work practices. This approach enabled the 
discovery of a new construct which we term “physically embedded data”. We conclude that existing 
process models need to be extended to facilitate the design of effective MR systems for knowledge work 
practices by explicitly incorporating this phenomenon. This understanding also forms the basis for 
further research opportunities into a new system design methodology for industrial MR support systems 
for knowledge work practices. 
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1 Introduction 
Industrial work environments are complex in many respects and require a high level of domain expertise. 
Effective support for industrial work requires appropriate technology that is designed in collaboration 
with domain experts in order to understand actual work practices, rather than prescribed process 
definitions, within a specific work environment. This proposition underpins the Industry 4.0 movement 
where the objective is to use “smart” technologies to increase efficiency and reduce human errors in 
industrial activities. Manufacturing, assembly and maintenance industries, with their relatively linear 
and discrete work activities, were among the early adopters of Industry 4.0.  
However, other industry sectors deal with more complex human-centred activities. In this context, work 
activities focus on human decision making and judgement, informed by diverse data and mediated by 
environmental, contextual and social factors. In work environments involving such knowledge work 
(Iivari & Linger, 1999), the challenge is to design technology to support those activities in a way that 
people retain control of the work, rather than automate that work.  
We were approached by our industry partner, Agilent Technologies (Agilent), who believed that mixed-
reality (MR) technologies could potentially improve knowledge work practices in the context of an 
industrial chemical laboratory (wet lab) - a laboratory which may be used in the preparation of liquid 
chemicals for scientific research. Our study uses design science to explore this issue. In this paper we 
use MR as an encompassing term for all technologies on the reality-virtuality continuum (Milgram et 
al., 1995), most notably augmented-reality (AR) and virtual-reality (VR). MR offers the possibility of 
supporting work activities by bridging digital and physical worlds. This includes providing digital 
information directly overlaid on the surrounding physical work environment and reconstructing accurate 
digital representations of physical environments and activities. Our overarching research project 
addresses the question ‘What are the opportunities and challenges for deploying an industrial mixed-
reality support system for knowledge work practices?’. 
Our collaboration with Agilent situates our research within an actual wet lab environment. In this paper 
we address the specific research question: 
 How can mixed-reality support knowledge work practices in the wet lab domain? 
The significance of our study is that it is the first naturalistic (in-situ) study investigating the use of MR 
in this domain and draws on the domain knowledge of the workers performing actual work practices. 
This contrasts with the artificial experimental conditions that characterize most MR research. Our 
research setting allows us to explore individual and collaborative work practices, identify tacit and 
explicit knowledge that informs those practices, prototype MR applications and evaluate the technology 
together with the domain workers. 
We discovered that the performance of knowledge work practices relies on data which is “physically 
embedded”. We define physically embedded data as data or information inherent in the form and state 
of physical context, objects, people, or other (non-digital) artifacts involved in the activity. Examples of 
such physically embedded data in the context of a wet lab (as discussed in this paper) are experiment 
notes written in a paper logbook, contamination in a test-tube indicating the need to sterilize it, and 
scratches in the paint from which it is possible to infer that the radio frequency (RF) shielding of a mass-
spectrometer is damaged. Another important aspect of our study was the collaboration between domain 
experts which points to the role of tacit knowledge and social learning in the performance of knowledge 
work practices.   
Our reflection on the deployment of our MR systems highlighted the need to incorporate relevant 
embedded data in the design of the MR systems. This points to the need to extend how work processes 
(and practices) are formally represented. Process models need to explicitly represent physically 
embedded data and the learning loops inherent in the collaboration between the domain experts. Such 
models would identify the interface between data as an abstract entity and its real-world representation. 
Moreover, these models would facilitate the design of MR applications by clarifying what aspects of the 
practice can be appropriately supported by MR systems. 
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The insights gained from our study provide the basis for articulating a new system design methodology. 
This methodology would include observation of work practices, elicitation of tacit knowledge from 
domain experts and representation of process and practice in models incorporating physically embedded 
data. Such a methodology would support the industrial deployment of MR technologies and systems for 
knowledge work practices. 
The next section discusses related work in this area and justifies our design science methodological 
approach. It is followed by a detailed account of each stage of our exploratory study in Section 3. We 
then provide a discussion of the impact of this research, including possible avenues for further research, 
in Section 4. 

2 Related Work 
In this study we theorize the activities within the wet lab domain as knowledge work. Knowledge work 
is defined by Iivari & Linger (1999) as work that is based on a body of knowledge and produces outputs 
which are primarily knowledge. Knowledge work practices require a deep understanding of ‘objects of 
work’ - physical artefacts or abstract phenomena essential to the practice. Work practices within the wet 
lab domain rely on human decision making and judgement, informed by diverse data and mediated by 
environmental, contextual and social factors, and as such can be considered knowledge work practices. 
The diversity of data within knowledge work practices is contextual, therefore a system designed to 
support these practices must compliment this (Burstein & Linger, 2003). MR offers the possibility of 
supporting knowledge work practices by providing contextual information directly overlaid on the 
surrounding physical work environment and reconstructing accurate digital representations of physical 
environments and activities, bridging digital and physical worlds. 
The divide between the digital and physical world has been a long-standing concern in MR research. 
The established approach in MR to bridge this divide is to create a “Digital Twin” model of the physical 
world. In this paper, we propose an alternative approach based on the physically embedded data 
construct where data is conceptualised as an abstract entity represented in a variety of forms, from the 
tacit contextual state of physical objects to tacit and explicit knowledge. Our approach extends the work 
of researchers like Dourish (2004) in which data are seen as purely digital entities with links to a tangible 
object. 
Existing MR research largely focuses on interaction techniques, devices, perception and applications 
(Marriott et al., 2018). However, there is currently a need to explore how MR can be used effectively in 
the workplace and how to integrate it in collaborative industrial workflows, including knowledge work 
practices. 
Ens et al. (2019) explored 110 research papers on collaborative MR from the past three decades. They 
found that 95% of papers focused on synchronous collaboration, with 68% focusing on distributed 
collaboration. Real-time remote support tasks were the most common application explored. They 
conclude, however, that most studies undertaken in this area have been controlled laboratory 
experiments containing artificial tasks with the intent of uncovering general design principles (Masood 
and Egger, 2019; Schmalstieg and Hollerer, 2016). For example, a popular substitute for industrial 
assembly tasks involves getting participants to assemble Lego models by following step-by-step 
instructional guides (Gavish et al., 2015; Paelke, 2014). This extends to collaborative MR research, with 
much of the focus on dedicated collaborative research spaces (Müller, 2015; Müller, 2019), CAVE 
Automatic Virtual Environments (CAVEs) (Cordeil et al., 2016) or other self-contained areas with built-
in tracking systems (Isenberg, 2010). 
It is not uncommon for researchers to conclude that modern MR technology simply has too many 
limitations to be effectively implemented in real world contexts (in-situ) in its current state. Some of the 
most cited limitations being bulkiness (Franklin, 2006), tracking instability (Marner et al., 2013), and a 
narrow field of view (Bork et al., 2018). While the certainty and replicability of a controlled study 
environment can overcome, or at least alleviate, such limitations, another likely reason that studies are 
rarely conducted in-situ is due to the level of industry access required by researchers, adding to the 
logistical complexity of the study. Despite this, designing and evaluating solutions in-situ must be 
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explored in order to better understand how these systems succeed or fail to meet user requirements in 
an industrial environment involving actual work practices. 
There is also a need for additional research into conceptual frameworks for the design of MR systems 
which support industrial knowledge work practices. Dourish (2004) discusses the importance of the 
relationship between both the physical and symbolic nature of interaction and how this relationship 
should be a principal design consideration of digital support systems. They also introduce the concept 
of data objects being mapped onto physical objects in the user's environment. However, this is largely 
explored in the context of tangible computing whereby data objects can be displayed and allow 
interaction through a physical interface. This idea should be extended to consider the role of data more 
broadly in an industrial MR support system. 

3 Methodology 
Currently, there is a distinct lack of practical “informing” (Gill and Bhattacherjee, 2009) provided to the 
industries from which most MR research problems are drawn. To address this, we have chosen a Design 
Science Research (DSR) approach (Hevner et al., 2004). A distinguishing feature of DSR is the 
relevance of research results to real-world applications (Straub and Ang, 2011). DSR researchers (Lee 
et al., 2011; Myers and Baskerville, 2009) acknowledge the need for researchers to publish both 
theoretical and practical contributions. We achieve this through the situated design and implementation 
of an artefact (MR prototypes) (Gregor and Hevner, 2013), followed by a naturalistic evaluation of the 
artefact (Carlsson and Johansson, 2010), and are ultimately able to demonstrate “proof of value” (Gregor 
and Hevner, 2013) to industry through domain expert testimony. Despite the logistical complexities and 
technological limitations faced, this approach enabled us to obtain a greater understanding of MR design 
and deployment for actual industrial workflows, rather than general design principles. This 
understanding also forms the basis for further research opportunities into a new system design 
methodology for industrial MR support systems for knowledge work practices. 
As discussed in the previous section, most existing MR research is characterized by tightly controlled 
laboratory studies which uncover general design principles without practically “informing” the industry 
from which the research problem was drawn. We address this by conducting the first naturalistic (in-
situ) exploratory study of MR in the wet lab domain in partnership with Agilent. This approach enabled 
us to explore work practices, identify tacit and explicit knowledge informing those practices, and 
prototype and evaluate MR solutions together with domain experts.  
The study was conducted in three distinct stages, as shown in Figure 1. The first stage, Domain 
Knowledge Acquisition (Section 3.2), involved embedding researchers within the wet lab domain. We 
co-designed the MR prototypes by conducting a brainstorming workshop with domain experts to 
identify the work activities which presented the greatest opportunity for MR support. The second stage, 
Iterative Prototyping (Section 3.3), involved the development, deployment and evaluation of MR 
prototype systems. The third stage, Learning & Reflection (Section 3.4), was a self-reflection on the 
design and implementation of the MR prototypes. 
Each of these stages is informed by steps in the DSR methodology introduced by Gregor and Hevner 
(2013).  That is, stage (1) includes problem identification and definition of solution objectives; stage (2) 
design, development and demonstration; stage (3) is evaluation and communication of “proof of value” 
to stakeholders. 
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Figure 1. The study methodology. 

3.1 Study Setting 
The exploratory study lasted approximately 24 months in total, beginning in late 2017. The study setting 
was a wet lab. Wet labs are highly collaborative environments, with complex shared workspaces, where 
domain experts are required to cooperate and interact with numerous physical objects including complex 
scientific instrumentation and potentially hazardous chemicals. 
The study was conducted in partnership with Agilent, an industry leader in the wet lab domain, and one 
of their customers; Monash University’s Faculty of Pharmacy and Pharmaceutical Sciences (Monash). 
Monash was primarily chosen for logistical reasons, an existing legal agreement between Agilent and 
Monash, facilitating researchers’ access to the wet labs and domain experts. Moreover, Monash has a 
large volume of Agilent instruments. The need to observe the customer setting emerged from our 
interaction with Agilent domain experts who saw MR systems to be most beneficial to their customers. 
Our study had access to domain experts (more than 50) when the researchers were embedded in Agilent. 
In addition, at Monash, the study focused on two participants who regularly used the Agilent instruments 
during a typical day, as well as an Agilent technician who was on-site performing routine maintenance. 
We also had access to other users of the wet lab at Monash. 

3.2 Domain Knowledge Acquisition 
Initially the researchers were integrated within Agilent for approximately 6 months in order to gain a 
deep understanding of the day-to-day work practices and environments of Agilent and the intricacies of 
Agilent’s signature spectroscopy instrumentation. During this time, we conducted a brainstorming 
workshop, as outlined in the requirements gathering process introduced by Goodwin et al. (2016), with 
domain experts to explore the potential value and requirements of an MR support system.  
During the workshop, participants were tasked with brainstorming and storyboarding existing work 
practices with their ideal MR support solutions. From this, it was determined that customer focused 
work practices provided the greatest opportunity for MR intervention. Specific activities that were 
discussed included remote technical support and sample preparation. 
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Figure 2. Chemical formulas written on a fume cupboard window (left) and experiment data 

written in a paper logbook (right) within a wet lab at the customer site. 

At Monash, each participant was observed during a typical workday. Of particular interest during the 
observations was engagement with physical objects and data in various forms. Participants wrote notes 
on a fume cupboard window and in a physical logbook to record important information about their work, 
including how samples were prepared (Figure 2). When asked, participants stated that there were no 
digital alternatives and that this was considered common practice in the domain.  
A more subtle example was the choice of scientific equipment. One of the participants stated, “I use 
this [instrument] because there is usually no waiting time, even though the [instrument] at the back [of 
the laboratory] is better”. This was particularly noteworthy as both instruments were of the exact same 
make and model. When asked why one instrument was considered better than another the participant 
was unable to give a clear reason. However, the Agilent technician explained that the instrument was 
likely to be perceived as “better” because some of its internal components had recently been replaced. 
This information was unknown by other participants, who entered the laboratory to use this particular 
instrument. This example shows that participants form a particular mental model of the activity based 
on their knowledge of their environment and the physical objects in that environment. 
In another example, the Agilent technician identified potential issues with an instrument that the internal 
diagnostics failed to detect. This included listening for a particular sound being emitted from the 
instrument to determine if it were functioning correctly and observing damaged paint on one of the 
internal components that if left damaged could have negatively affected the results obtained from the 
instrument. 
Our interaction with Agilent domain experts and close observations of work practices at Monash 
provided a rich picture of the deployment potential for MR systems. At the same time, it gave us an 
insight into the complexity of the work practices and the importance of both tacit and implicit knowledge 
of the work environment, even if it is not recorded in the prescribed process definition. The challenge is 
to incorporate the data to represent such knowledge in the design of MR support systems. 

3.3 Iterative Prototyping 
The brainstorming workshop was the basis on which we determined that most value would flow from 
an MR system that could directly interface with the complex spectroscopy instrumentation found in 
Agilent customer wet labs. The first prototype was designed to provide remote technical support for the 
customer using the instrumentation. The Agilent support technician could remotely interact with the 
customer’s instrument through virtual reality (VR), while the customer used augmented reality (AR) 
overlays to see what the technician was doing in real-time. The prototype system displayed an 
augmented hologram of a single instrument and could highlight individual internal components and 
display real-time diagnostic information about them (Figure 3). This system allowed users to monitor 
an instrument in real-time without having to rely on the complex onboard software through the 
connected workstation. The system also had some collaborative capabilities, allowing multiple users to 
connect to the same session and view the same instrument data remotely. 
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Figure 3. Screenshots of the first MR prototype developed during the study showcasing a remote 

support activity. The remote technician can view real-time diagnostic information 
about the customer’s instrument (top left) and view a hologram of the instrument and 
it’s internal components at 1:1 scale (top right). The customer can then be guided 
through simple maintenance tasks by the technician via ‘x-ray’ style holographic 
overlays (bottom). 

Our observations and discussions with domain experts at Monash led to the development of a second 
prototype. However, due to technological limitations with current AR technology at the time, such as 
difficulties tracking small glass test tubes, we developed this prototype entirely in VR. Incorporating the 
surrounding lab environment into the solution also presented a challenge in determining which objects 
of work were relevant to the activity (Kalkofen et al., 2007) and then tracking them. VR enabled us to 
overcome these challenges by reproducing a complete virtual wet lab, with spectroscopy 
instrumentation, fume cupboards, and test tubes (Figure 4) ensuring all objects of work were present 
and tracked without the need for complex tracking systems. Within the virtual lab, users could interact 
with artefacts, see real-time instructional overlays, and prepare samples for analysis. The information 
overlays provided in this prototype were based on the object’s interaction history. This allowed the user 
to be made aware of relevant information, such as potential contamination of a test tube during sample 
preparation. 
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Figure 4. Screenshots of the second MR prototype developed during the study showcasing a 

sample preparation activity. The user can interact with small glass test tubes (top left), 
prepare samples (top right), analyse samples (bottom left), and analyse results 
(bottom right). 

Development of both prototypes took approximately one year, throughout which researchers conducted 
iterative evaluations of each system with Agilent domain experts and Monash lab users. These 
evaluations focused on how the prototypes met the needs of the workers when performing actual work 
practices. Two formal evaluations were conducted with a subset of participants from the brainstorming 
workshop, as this group had been involved in determining the requirements of the MR support system. 
In addition, several informal evaluations took place throughout the year. In the formal evaluations, 
domain experts were given a brief 10-minute training session on how to use the system and were then 
observed by researchers while they used the system in a real wet lab to complete actual work tasks for 
approximately 30 minutes. In the informal evaluations, participants were given unlimited time to use 
the system without prior training or set tasks. In each case participants were then asked for verbal 
feedback.  
Feedback about the first prototype suggested that domain experts wanted a broader view of the 
customer’s work environment. Multiple participants specifically mentioned that they needed to see the 
pump tubing connected to the instrument and the contents of any nearby samples. All participants agreed 
that they would prefer to see a “first person” point of view representing exactly what the customer sees 
in their work environment. There was also feedback on the technological limitations of the system, 
including it’s narrow field of view and tracking instability, which is consistent with prior MR research 
as outlined in Section 2. 
The second prototype addressed this feedback by incorporating additional aspects of the surrounding 
wet lab environment into a VR simulation of a virtual wet lab. Participants stated that the virtual wet lab 
was “surprisingly immersive”. Additional feedback suggested that participants still required further 
information about the state and context of objects within the lab. One user stated that they wanted to be 
able to see “more detail [about] the workflow” as it was being undertaken. 
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3.4 Learning & Reflection 
A key problem with the prototypes was that they attempted to directly translate existing support systems 
into MR instead of utilizing the advantages of the MR technology to improve the technological support 
for the user. As such, users who were already familiar with the existing systems did not see added value 
of the MR system beyond the novelty of the new technology. 
Our reflection was that our prototypes failed to demonstrate the potential for MR to identify, track and 
incorporate data to represent knowledge and information inherent in the environment and the objects in 
that environment. Many of the observations of in-situ work practices made during the study need to be 
recorded to articulate the implicit or incidental knowledge and information which is relevant in those 
practices. Our prototype evaluations suggest that a conventional approach to MR system co-design fails 
to add value to knowledge work practices which rely on such information and knowledge. 
We use the term physically embedded data as an encompassing term representing data, information and 
knowledge inherent in the form and state of objects, people, context or other (non-digital) artifacts 
involved in an activity. Our observations suggest that knowledge work practices, such as those in a wet 
lab, rely on physically embedded data even when such data is not made explicit to those involved in the 
activity. Designing effective MR systems to support knowledge work practices requires the relevant 
physically embedded data to be identified so that actual work practices can be better understood and 
incorporated into the design of the system. 
As discussed in Section 1, we were originally approached by Agilent who believed that MR technologies 
could potentially improve knowledge work practices in the context of a wet lab and their spectroscopy 
instrumentation. As part of our design science approach, the relevance of this research to real-world 
applications must also be acknowledged. The following is a statement provided by a senior manager at 
Agilent demonstrating the “proof of value” of this research to Agilent: 

“MR technology research has considerable value to Agilent in our capacity to provide assisted, 
augmented solutions to our customers. This comes in two forms, one visionary in that it scouts 
and researches the future to see what could be and the other determining a feasible path that 
leads us to those customer outcomes in the future. There is the capacity to use this technology 
to train a naïve user through to supporting an expert one. One of the most obvious examples is 
that of supporting customers during the COVID-19 pandemic, MR technology gives us a way 
of being there with the customer when they need assistance. 
Laboratory customers face two problem domains that this research addresses. The first is 
dealing with digitally silent lab items that hold information the user needs to cognitively manage 
(e.g., what is in this glassware? Is it clean?). The second is helping them in a workflow that sits 
in an emerging MR domain, but which needs to incorporate digitally silent items. 
This body of research helps Agilent understand a laboratory more fully, it’s workflow and the 
ability to design future solutions to ease the cognitive load of our customers in their labs.” 

4 Discussion 
The overarching aim of this research project was to identify opportunities and challenges for MR support 
within knowledge work practices. Our collaboration with Agilent enabled us to explore this within the 
context of the wet lab domain. 
As discussed in the previous section, our prototypes had failed to properly understand and utilise the 
physically embedded data relevant to the work practices that we explored. In fact, current process and 
practice models do not account for this phenomenon at all. These models need to be extended to account 
for the coupling of artefacts and their physically embedded data. While this is outside the scope of this 
research paper, here we provide a discussion of how process modelling may incorporate physically 
embedded data to increase understanding of knowledge work practices and identify opportunities for 
MR support. 



Where the Data Is 

Twenty-Ninth European Conference on Information Systems (ECIS 2021), Marrakesh, Morocco. 11 

 

 
Figure 5. An example process model of the sample preparation & analysis activity, 

demonstrating the explicit incorporation of data objects and their linked 
representations, as well as the learning loops inherent in the activity. 

The abstraction of a data object from its physical or digital representation, as shown in Figure 5, provides 
several clear advantages. It enables us to more clearly visualise the role that an MR system would have 
when integrated within the activity. Currently, the user would be required to identify and maintain the 
link between a data object and its representation. This not only increases the cognitive load required to 
perform the task but is also inherently more prone to human error. This is especially significant when 
one considers the complex and contextual nature of knowledge work practices.  
By integrating MR within the activity however, the role of identifying a data object, and maintaining 
the link to its representation could theoretically be handled entirely by the system, thus reducing 
cognitive load and lowering the chance of human error (Küçük et al., 2016; Yang et al., 2019). For 
example, in the above activity an MR system could potentially track the interaction history of a glass 
test tube and inform the user of a potential contamination. There are also scenarios where the 
representation of data may not actually be integral to the activity at all, but rather only the data itself is 
required, such as the mental model formed by weather forecasters as a result of hand-drawing weather 
charts rather than relying solely on computer-generated charts (Linger & Aarons, 2005). As a further 
example, as observed in this study, domain expert knowledge about a process may be written in a 
logbook. However, the logbook itself only serves as a representation of that knowledge, only the 
knowledge itself (the data object) is integral to the activity. In such scenarios, MR could potentially 
remove or digitise physical representations altogether and display them contextually in-situ, thus 
simplifying the activity process (Funk et al., 2016; Werrlich et al., 2018).  
Another potential advantage involves the identification of learning loops within the activity. For 
example, the data object output by a task may itself become an input in a parallel learning task. The 
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output of the learning task could be actual knowledge, such as the weather forecasters’ mental model 
discussed above. In the context of our observations this would apply to the domain expert recognising 
the RF shielding of a mass-spectrometer to be damaged due to scratches in the paint as a result of their 
prior experience. 
The insights gained from our study present further research opportunities for articulating a new system 
design methodology. Informed by the methodological approach of this study, a new methodology would 
include observation of work practices, elicitation of tacit knowledge from domain experts and 
representation of process and practice in models incorporating physically embedded data. Such a 
methodology would clearly identify the aspects of a knowledge work practice which could be effectively 
supported through MR and enable the implementation of effective MR systems to support those 
practices. 

5 Conclusion 
Supporting collaborative industrial activities has been a major focus of MR research for some time now. 
The maintenance, assembly and manufacturing industries were among the early adopters of MR 
technologies due to the relatively linear and discrete nature of their work practices. However, other 
industries with work practices which rely on human decision making informed by environmental, social 
and contextual factors introduce a new challenge. The tightly controlled experimental conditions of most 
existing MR research fails to “inform” those industries on the potential value of MR support as these 
studies are unable to address the complexities of actual work practices. 
In this paper we explored the potential of MR to support knowledge work practices within the wet lab 
domain. Unlike most existing MR research, we took a DSR approach by conducting the first naturalistic 
(in-situ) exploratory study of MR in the wet lab domain. This enabled us to utilize domain expert 
knowledge during the design, development and evaluation of prototype systems to focus on the needs 
of workers undertaking actual work practices within the domain. This approach ultimately led to the 
discovery of a new construct, which we term physically embedded data.  
Our reflection and subsequent discussion indicate the need to formally represent this phenomenon in 
process and practice models to facilitate the design of industrial MR systems by highlighting areas where 
MR could provide effective support for knowledge work practices. We also present a research 
opportunity for a new system design methodology which would include observation of work practices, 
elicitation of tacit knowledge from domain experts and representation of process and practice in models 
incorporating physically embedded data. This methodology could then be applied in other domains (or 
with other technologies) to further explore the physically embedded data phenomenon. 
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