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User trust plays a key role in determining whether autonomous computer applications are relied upon. It will
play a key role in the acceptance of emerging AI applications such as optimisation. Two important factors
known to affect trust are system transparency, i.e. how well the user understands how the system works, and
system performance. However, in the case of optimisation it is difficult for the end-user to understand the
underlying algorithms or to judge the quality of the solution. Through two controlled user studies we explore
whether the user is better able to calibrate their trust in the system when: (a) they are provided feedback on
the system operation in the form of visualisation of intermediate solutions and their quality; (b) they can
interactively explore the solution space by modifying the solution returned by the system. We found that
showing intermediate solutions can lead to over-trust while interactive exploration leads to more accurately
calibrated trust.
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1 INTRODUCTION
Trust plays a critical role in determining user reliance on automated systems [30]. As a consequence
there has been considerable research into trust and the factors affecting it [30, 38, 61]. Too much
or too little trust are equally dangerous. For instance under-trust of the ship’s navigation system
by the captain may have led to the Costa Concordia running aground in 2012 while over-trust is
believed to have contributed to the crash of a Turkish Airlines flight in 1951 [30]. The Goldilock’s
trust dilemma is, therefore, how do we design computer applications that engender exactly the
right amount of trust, not too much, not too little.
Early research focussed on trust of real-time monitoring and control systems such as those

used for power-plant monitoring or flight monitoring and control, e.g. [53]. With the arrival
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of the internet the focus was on trust in on-line systems, e.g. [14] and most recently there has
been considerable interest in trust for emerging AI applications such as autonomous vehicles [28],
robots [60] or medical assistance devices [28] since it is clear that adoption of these new technologies
depends upon building appropriate trust [64].
One important but often overlooked field of AI is optimisation. In general, optimisation tech-

niques aim to find the best solution to a given problem by modelling it mathematically using
constraints (which dictate the valid solutions) and an objective function (which measures the quality
of the solution) and then using constrained optimisation techniques to find the solution. Mathemati-
cians and AI researchers have been developing faster and more powerful techniques for solving
constrained optimisation problems since the 1950s. As a result optimisation is now routinely used
in various application areas including transport and logistics, timetabling, production scheduling
and the design of modern energy systems. But there is considerable scope for more widespread
use of optimisation software, and a major factor limiting its use is a lack of trust in automated
optimisation systems [47].
Given this, it is surprising there has been virtually no empirical research into user trust of

optimisation systems. The main contribution of this paper is to address this significant gap through
two controlled studies investigating how feedback about solver progress and interactive manipula-
tion of the solution affect trust in optimisation systems. Hoff and Bashir identify three kinds of
factors affecting trust: dispositional, situational and learned trust [30]. We focus on learned trust
as this takes into account the user’s understanding and experience with the actual system. It is
therefore the only category affected by the system design and interface.

One important factor affecting learned trust is whether the user understands the algorithm being
used by the system and believes that it is capable of achieving their goals [38]. Unfortunately,
state-of-the-art optimisation software is very complex, often non-deterministic, and typically works
on an internal representation of the problem that is difficult even for an expert in optimisation to
understand. Thus, it is infeasible to present the detailed algorithm execution in terms of the actual
internal representation. However, we hypothesised that trust in the system would be increased by
providing high-level feedback on progress towards the final (near-)optimal solution in a way that
could be understood by the user.
We investigated this in our first study (Section 4). Participants were asked to rate their trust in

two solvers. Each solver was shown with or without feedback in the form of displaying interim
solutions and their associated objective values as the system proceeded toward the final solution.
Such feedback allows the user to see the range of solutions being considered and their relative quality
in terms of the objective function. We constructed the two solvers to produce solutions of different
quality; the good solver returned near-optimal solutions, and the poor solver returned solutions
30% worse than those of the good solver. As hypothesised, feedback led to significantly greater
trust in the poor solver (but not the good solver). Indeed we found that there was unwarranted
trust in the poor solver with feedback.
But the main factor affecting learned trust is the user’s evaluation of the system performance.

We wanted to allow the user to be able to evaluate the quality of the system’s performance in a
way that allows them to discriminate between various levels of performance [38]. Unfortunately,
it can be very difficult for the typical user to evaluate the quality of a solution produced by an
optimisation system for a real-world problem. Unless the solution has some obvious faults it is
very difficult to know if there is another solution that improves the objective. The problem is
that the solution space (or fitness landscape) is typically disjoint and/or the objective function is
non-continuous or non-convex. It is also not feasible to compute and display more than a fraction
of the solution space. A possible approach is to use a visual-analytics-based approach in which the
user can interactively explore and visualise the solution space around the solution returned by the
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Fig. 1. High-level framework for understanding the factors that influence trust and reliance on autonomous
systems. It incorporates the three-layered trust framework of Hoff and Bashir [30] into the framework of Lee
and See [38].

system. Indeed some optimisation researchers have previously suggested (without experimental
evidence) that interaction leads to increased trust [47].
In our second study (Section 5) we investigated this. We examined whether allowing the user

to interactively manipulate the solution—either completely manually or with the help of a semi-
automatic re-solve capability—enables the user to more accurately assess the quality of the solver.
Our hypothesis was that interaction with the solver would lead to better assessment of solver
quality. This study used an additional medium solver which returned solutions 15% worse than
those of a good solver. Each solver was shown in three conditions: no interactive manipulation
of solutions, manual interaction and interaction with re-solve. As hypothesised we found that
interaction led to significantly better calibration of trust.

The two studies were conducted using a purpose-built optimisation tool for routing and sched-
uling of electrician service provision. The underlying problem is a variant of the Vehicle Routing
Problem, a well-studied optimisation problem [66] that is known to be challenging in practice.
The system utilised a state-of-the-art optimisation solver and featured a carefully designed visual
representation of a problem instance and solution (Section 3).
The two user studies we have presented are the first we know of to explicitly explore in a con-

trolled setting the impact of the design of the optimisation system on user trust. As such they are
only a first step and more experimentation is required. Nonetheless our results do have implications
for the design of optimisation systems. They strongly suggest that optimisation systems should
allow the user to interactively manipulate solutions returned by the system. This allows the user to
better evaluate their quality and so calibrate and build their trust in optimisation system.
Our results provide new insight into the factors affecting trust. Most interestingly, the results

suggest that, for AI applications such as optimisation and machine learning (which utilises optimi-
sation) in which it is difficult for the user to evaluate solution quality, users will be better able to
judge and calibrate their trust if the tool allows them to interactively manipulate solutions returned
by the system so that they can better evaluate their quality.

2 BACKGROUND
2.1 Trust in Automation
Over the past four decades there have been hundreds of papers written about trust in automation.
Parasuraman and Riley [53] pointed out that over-trust and under-trust are equally dangerous
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because they may cause misuse or disuse of automation systems. Dzindolet et al. [20] investigated
the link between trust and automation reliance and concluded that trust plays an important role
in decisions about automation reliance. It found that explaining the reasons when an automation
system makes mistakes resulted in increased trust and thereby increased automation reliance.
Herlocker et al. [29] also found that explanations can build trust and increase the acceptance of a
recommendation system. Recently, Abdul et al. [1] emphasised the need to build more transparent
intelligent systems to help users understand the behind-the-scenes decision making to gain trust.
Most recently, Roy et al. [59] suggested that a well designed human-in-the-loop automation system
that allows manual rectification after automation may result in higher user satisfaction.
A number of researchers have suggested general frameworks for understanding trust. The

following review is based on Lee and See’s influential theoretical framework [38] and the three-
layered trust framework of Hoff and Bashir [30]. Figure 1 shows the combined framework.
Lee and See [38] define trust to be the attitude that an agent, i.e. computer system, will help to

achieve a user’s goals in a situation characterised by uncertainty and vulnerability. Trust is based
on the user’s beliefs and their intentions and actions, such as degree of use and reliance on the
system. Calibration refers to the correspondence between the system’s capabilities and the level
of trust in the system: over-trust occurs when trust exceeds the capabilities while distrust occurs
when capabilities exceed the level of trust.

In Lee and See’s framework, trust is based on information about the system as well as individual,
organisational and cultural context. They identified performance, process and purpose as the general
basis for trust. Performance refers to what the system does: its ability to achieve the user’s goals. A
user will tend to trust a system if it has performed well in the past. Process refers to how the system
operates: the degree to which the system’s algorithms are appropriate for the situation. A user will
tend to trust a system if they understand its algorithms and believe they are appropriate to the
goals in the current situation. Purpose refers to why the system was developed. A user will tend to
trust a system if it is being used within the realm of the designer’s intent.

Hoff and Bashir [30] present a three-layered model of trust arranged around: dispositional, situa-
tional and learned trust. Dispositional trust refers to a user’s overall tendency to trust automation,
independent of context or the specific system. Factors include culture, age, gender and personality
type. Situational trust takes into account the context in which the system is used [13]. Factors
such as workload, difficulty of task and associated risk, as well as user self-confidence, mood,
and expertise in the application domain affect both trust and reliance. Learned trust refers to the
user’s evaluation of the actual system. It depends upon the user’s pre-existing knowledge and
system performance. They distinguish between initial and dynamic learned trust. Pre-existing
information, such as: system reputation; prior experience with similar automated systems; as well
as knowledge about the purpose and the algorithms being used, all affect initial trust. On the other
hand, numerous studies show that users adjust their trust based on the system’s performance,
e.g. [5, 19]. As also discussed by Schaefer et al. [61], reliability, validity of result, predictability,
usefulness, dependability, and the kind and seriousness of errors are all important.
Both Lee and See and Hoff and Bashir discuss how perception of the system crucially depends

upon the design of the system and its user interface. Many studies have found that the content
and format of the interface affect credibility and trust, e.g. [8, 23, 35, 41]. Lee and See conclude
that trust tends to increase if the interface provides concrete details that are consistent and clearly
organised. Hoff and Bashir suggest that increasing saliency of automated feedback can increase
trust. Ease-of-use [25], level of control [68], and communication style also affect trust. They also
identify transparency of automation as a factor affecting trust and recommend providing accurate,
useful feedback on the system’s operation. Similarly, Lee and See recommend to: “show the process
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and algorithms of the automation by revealing intermediate results in a way that is comprehensible to
the operators.”
The above high-level framework is based on user-studies of trust in a number of different

application domains. Early research focussed on trust of real-time monitoring and control sys-
tems [37, 48, 50, 53]. With the arrival of the internet the focus was on trust in on-line systems.
Corritore et al. [14] describe a model for online trust based on perception of website risk, credibility
and ease of use. Other researchers have investigated models of trust for online shopping [25, 39],
cyberdomains [31], recommendation systems [15, 27], adaptive agent systems [27], and informa-
tion security classification [55]. More recently, AI applications such as autonomous vehicles [28],
robots [60], medical assistance devices [28] and machine learning [34, 58] have received attention.

2.2 Explainable AI
Recently, there has been considerable interest in explainable artificial intelligence (XAI). This aims
to provide human-understandable explanations of AI systems to increase users’ understanding and
trust of AI systems. Ribeiro et al. [58] found, for instance, that providing explanations allows users
to calibrate their trust in machine learning classifiers. Specifically, users’ trust dropped substantially
when the explanation for the bad classifier was revealed. Explainable AI approaches fall into two
main categories: transparent models and post-hoc explainability. According to Lipton [42], the pur-
pose of transparent models is to open the black-box of the AI model so that users can understand
how the model works. More specifically, there are three levels of model transparency:

• Simulatability: refers to the ability of the underlying AI model to be simulated by a user:
this requires the model to be relatively simple.

• Decomposability: denotes the ability to decompose the model and explain each part of it,
such as input and parameters without the need for any other tools.

• Algorithmic transparency: emphasises the ability to allows users to understand themodel’s
behaviours for producing outputs.

For more complex AI models, post-hoc explainability provides alternative approaches to improve
the interpretability of the model. They are:

• Text explanations: provide users with explanations of the results from the model using
natural language text and symbols.

• Visual explanations: utilise visualisations to facilitate the understanding of the model’s
behaviour. It is typically used in conjunction with other techniques to improve users’ under-
standing, especially for non-expert users.

• Local explanations: produce explanations for a subset of the model rather than presenting
the behaviour of the whole model.

• Explanations by example: extract representative examples to give users a better demon-
stration of how the model works, similar to how we explain a process, by using specific
examples.

Later on, post-hoc explainability has been extended by Arrieta et al. [3] to include another two
kinds of explanations:

• Explanations by simplification: describe a simpler new system that is essentially equiva-
lent to the original. Because of the relative simplicity, the new system is easier to interpret.

• Feature relevance explanations: show an indirect explanation of a model by quantifying
the relevance of input variables in relation to the output. Comparing the relevance scores
gives the user insights into the importance of different variables.
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2.3 Trust in optimisation
Most work on explainable AI has focused on explaining the results of machine learning (ML) for
classification, prediction or recommendation. While there are strong links between optimisation
and ML–in particular optimisation is often used for ML–and similarities in that both typically use
complex algorithms that make it difficult even for experts to understand and interpret the results
there is one significant difference. In ML the optimisation problem is often abstract and ill-defined at
least from the point of view of a non-expert user so it is difficult for them to judge performance. In
many optimisation applications, however, an end-user who has knowledge of the problem domain
but is not an optimisation expert has the ability to judge performance. In particular, while the
end-user may find it hard to know if a solution is a global optimum they can readily judge, at least
for problems with a well-defined objective, if one solution is better than another. Thus ML and
optimisation have potentially different characteristics when it comes to explainability and trust.

Despite the recognition that user trust is vital in building acceptance of optimisation, there has
been virtually no research in this area. While some researchers have conjectured that interactive
optimisation will increase trust [47], user studies evaluating interactive optimisation systems have
focussed on solution quality and time spent to find a solution rather than trust [2, 6, 9, 10, 17, 33,
54, 62, 63, 65].

A number of researchers have investigated explainable optimisation, e.g. [18, 52]. However, to the
best of our knowledge there have not been empirical evaluations of how explainable optimisation
affects user trust. The other main suggestion for increasing user trust in optimisation algorithms is
through user interaction. While the most common reasons for providing interaction are to allow
the user to tailor the constraint problem or to guide the search for a better solution, it has also been
conjectured that interaction may increase trust [47]. However, user studies evaluating interactive
optimisation systems have focused on solution quality and time spent to find a solution rather than
trust [2, 6, 9, 10, 17, 33, 54, 62, 63, 65].
Meignan et al. [47] provide a summary of the main kinds of interaction provided in interactive

optimisation systems:
• Trial and error: The simplest approach is simply to allow the user to adjust the existing
constraints, objectives and/or the parameters of the optimisation solver and then re-run the
optimisation from the beginning.

• Interactive re-optimisation: This ranges from simply allowing the user to manually mod-
ify the solution and see the impact to true re-optimisation in which the user makes changes to
the current solution and then the solution is re-optimised without overwriting the previous
user-specified changes.

• Interactive multi-objective optimisation: This aims at balancing the trade-offs between
different conflicting objectives.

• Interactive evolutionary algorithms: In this case, the user subjectively evaluates solu-
tions and the underlying optimisation systems apply evolutionary algorithms to continuously
improve and evolve solutions.

• Human-guided search: This allows users to guide the optimisation search process in order
to improve search efficiency.

The only study we are aware of that has empirically investigated trust in optimisation is by Liu
et al. [43] who conducted a small qualitative study with 8 oncology professionals to evaluate a new
interactive optimisation technique for brachytherapy seed placement for prostate cancer treatment.
They found some evidence that the participants gained trust through interactive optimisation in a
treatment protocol that was unfamiliar to most participants (focal brachytherapy) but little evidence
that interaction built trust in the solver as opposed to the treatment protocol. Furthermore, the
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Fig. 2. Study 1 interface. The objective line chart is shown only in the feedback condition.

study was small-scale, difficult to generalise to other applications, and did not tease apart which
aspects of the tool engendered trust or whether the increased trust was warranted. In a follow-up
paper Liu et al. [44] gives 9 design recommendations for interactive optimisation systems. A user
study evaluated these with reference to improving the quality of the solution but did not consider
user trust.

Thus, the two studies presented here significantly extend our understanding of how to engender
appropriate trust in optimisation systems. They also add to a more general understanding of trust
because—unlike most other applications—it is very difficult for the end-user to understand the
optimisation system (i.e. it is not transparent) or to judge system performance.

3 EXPERIMENTAL SYSTEM DESIGN
In both of our studies participants were presented with a vehicle routing problemwith timewindows
[16, 21, 36, 67]. We chose this problem because it is easy to understand and explain to non-expert
users but still a difficult optimisation problem. It was also used in [44]. The scenario presented to
the participants was that of a company that sends electricians to customers. Each customer requires
a certain fixed amount of time for the service, and has a time window when that service needs to
happen. All electricians start from a central depot and return to the depot after servicing all their
customers. During each experiment participants were given different instances of this problem. In
each instance the locations of the customers, their service times (time required to complete the job
at that customer) and time windows, the location of the depot and the number of electricians were
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given. The goal of the optimisation was to find a schedule allocating customers to electricians and
specifying the order in which the customers are visited so that all time constraints are respected
and the overall distance travelled is minimised.
In Study 1 we investigated the impact of providing feedback on the solvers progress towards

the final solution. Most constraint solving methods work by iteratively finding better solutions
to the problem. We therefore chose to display the current solution each time the solver found a
better solution together with the associated objective function value. This is a way of increasing
algorithmic transparency [42], allowing the user to “see” into the optimisation black-box.
In Study 2, we investigated the effect of interactive re-optimisation [46] on users’ trust. We

believed that this might provide a kind of local explanation [42] by allowing the user to explore
the solution space around the solution returned by the solver. We provided both a purely manual
modification of the solution without re-optimisation and modification with limited re-optimisation.
We provided two conditions because allowing the user to manually modify the solution and im-
mediately see the impact on the quality of the solution is straightforward to implement with any
constraint solving algorithm while true re-optimisation requires a solver that can support this.
We pre-computed the solutions before the study so as to control for the quality of solutions

returned by the solvers in the study. More precisely:
• Off-line solver:We solved each problem scenario off-line before conducting the user studies,
using state-of-the-art constraint solving technology (the problems were modelled in the
MiniZinc constraint modelling language [51] and solved with Gecode [24] as the back-end
algorithm). Each instance was run for up to 30 minutes and the best solution as well as any
sub-optimal intermediate solution found in that time was recorded. Afterwards, for each of
the best solutions found, we ran the solver again, adding constraints to limit solution quality
to 15% worse, and then 30% worse, compared to the best solution found. These additional
solutions were used to simulate different solver qualities while maintaining full control over
the experimental conditions.

• On-line solver: In the experiments users are presented with two or three different “on-line”
solvers: a good solver, a poor solver and a medium solver. In reality, all three on-line solvers
were simulated based on the results computed off-line. The good solver is the best solution
found in the off-line computation; the medium solver shows the 15% worse solution, and the
poor solver condition uses the 30% worse solution. This allowed us to closely control the user
experience and to make sure it was consistent between participants, i.e. to keep the apparent
solve time constant across participants, solver condition and problem instance.

3.1 Visualisation of Routing Schedule as used in Study 1
We took considerable care developing a browser-based visual interface for use in the two studies
that provided participants with readily understandable information about a scheduling solution
and its quality. In Study 1 we defined two conditions: feedback and non-feedback. The interface (see
Fig. 2) provided three different view panels with an additional panel for the condition with feedback.
Colour is used to distinguish individual electricians, and is consistent across all views [56].

The following views were used in both conditions:
• Map: Shows the location of the home depot, customer locations and the route for each
electrician. The implementation uses the OpenStreetMap1 on-line map resource and the
Leaflet2 JavaScript library to create overlay visuals.

1www.openstreetmap.org
2www.leafletjs.com
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(a)

(b)

(c)

Fig. 3. Study 1 interface with feedback on solver progress. (a) first solution; (b) an intermediate solution; (c)
final solution.
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• Schedule: Each electrician’s vehicle is represented by its own track in a faceted timeline [7].
We chose a horizontal layout of the timelines to better resemble a Gantt Chart, a commonly
used representation for schedules. Each letter represents a single customer. An electrician’s
schedule for service delivery to a customer is represented as a bar with two parts: grey and
white. The grey part indicates the actual period for the electrician to deliver the service to the
customer, whereas the white part represents the customer’s time constraints for the service
delivery.

• Solution statistics: The objective value to be minimised is the total distance travelled by
all electricians. We presented the total distance numerically as well as graphically in a
small, colour-coded, stacked-bar chart showing a breakdown of distance travelled by each
electrician.

The following panel was only shown in the feedback condition of Study 1.
• Feedback on solver progress: The solver that we used outputs a solution every time
a configuration with an objective lower than the previous best solution is reached. We
showed each of these interim solutions in an animated sequence, together with an objective
line chart that graphed the tour length for each of the interim solutions. We believed that
showing interim solutions would help users to understand the operation of the solver and its
exploration of the search space and that showing the objective line chart would help them
understand the solver’s progress towards the eventual solution. We also considered showing
the search space or displaying the fitness landscape but felt that end-users would find these
less meaningful and harder to understand. Fig. 3 shows an example of the feedback view. We
scaled and adjusted the minimum value of the y-axis of this chart such that the slope of the
line was similar across all instances and solvers, with the vertical decline taking up about 1

3
of the vertical range. We did this because piloting revealed that users were quick to judge
solver quality based on line slope.

Interaction The interface provided limited interaction:
• Brushing a route in either map or schedule highlights the route in the other view.
• Hovering over a time window shows an infobox of precise time window details.

3.2 Interactive Version as Used in Study 2
In Study 2, we had three conditions: No Interaction (NI),Manual Interaction (MI) and Semi-automatic
Interaction (SI).

• Manual modification: In both MI and SI we introduced a new interaction allowing users
to modify the solution by dragging the lines representing customers, either to change the
delivery order within one electrician’s tour, or to reassign a customer to a different electrician.

• Re-optimise: In the SI condition, we also introduced interactive optimisation in the form
of a “re-optimise button” to perform a local optimisation of the customer visit ordering for
an individual electrician. Since the number of possible permutations of customer order for
one electrician is relatively small, we were able to do this optimally using a simple complete
search algorithm running in the browser.

The interface is shown in Fig. 4 and an example of a participant exploring different solutions in
the SI condition is shown in Fig. 5. The map, schedule and solution statistics views were the same
as in Study 1, supporting the same basic brushing and hovering interactions, and were provided in
all three conditions.
In the MI and SI conditions, to support interactive exploration of the various user-generated

solutions, we provided a new histogram view of the objective function for different solutions. The
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Fig. 4. Study 2 interface. The objective histogram is shown in both SI and MI conditions. The re-optimise
button is only available in SI condition. The button turns off (greys out) when it is not possible to improve
the solution by reordering the order in which customers are visited by the associated electrician. The button
turns on when the there is a better solution with a shorter total distance.

objective histogram replaced the line chart view of objectives used in the feedback condition of
Study 1 to provide a more suitable interface for interaction, as follows:

• Because we no longer show the interim solutions from the solver, a linear connection of
points no longer makes sense. That is, we only show final solutions from the solver and
solutions after each user interaction (including infeasible solutions).

• The bars of the objective histogram provide a larger click target for time-travelling through
solutions compared to the small circles of the objective line chart.

• Some of the solutions may be infeasible as a result of user interaction. The bars corresponding
to such solutions are indicated in red.

Thus, the histogram allows participants to interrogate the provenance of each solution [57].

4 STUDY 1: EFFECT OF SOLVER FEEDBACK ON TRUST
The first user study examined whether feedback on solver progress affected user evaluation of solu-
tion quality and trust in the solver. We hypothesised that it would increase trust. Participants
were asked to compare their trust in a good solver returning near-optimal solutions and a poor
solver returning solutions 30% worse than those of the good solver. Each solver was shown in two
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(a)

(b)

(c)

Fig. 5. Study 2: an example of exploring solutions in the SI condition. (a) feasible and worse solutions; (b) an
infeasible solution; (c) a feasible and better solution.
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Fig. 6. Study 1 mixed designs overview.

conditions: non-feedback and feedback during execution showing (simulated) partial solutions and
quality of solution as discussed above.

4.1 Participants and Setting
We recruited 28 participants: students, researchers from our institution and a few employees from
other organisations. We had 15 male participants and 13 female participants. 22 aged between 20
and 29, the remaining 6 participants were aged between 30 and 39. All participants had normal or
corrected-to-normal vision and were without any colour vision impairment. We carefully balanced
the participants so that we had exactly 14 experts and 14 non-experts. Participant expertise was
determined based on the answers to a short questionnaire given at the very beginning of the
experiment. Participants were considered as experts if they were either: at least somewhat familiar
with optimisation; or, they had previously encountered vehicle routing problems. The study was
run on a PC equipped with an Intel i5-6600K 3.5 GHz processor and a 27-inch screen (1920 × 1080).
Participants were equipped with a Tobii X3-120 eye tracker at the beginning of the study.

4.2 Tasks and Design
For each problem instance, participants were asked to evaluate the quality of the solution returned
by the solver (scale 1–7).
After evaluating all solutions produced by the same optimisation solver, participants were

asked to evaluate the optimisation solver using different measures of trust (scale 1–7). The trust
measures were based on those used in the trust literature but the questions were slightly reworded
to fit an optimisation context. This did not change the definitions or structures of the original
measurements. They consisted of a single-item measurement of overall trust plus six single-item
measures of different components of trust as identified by prior research. A similar model was
used in [37]. Single-item measures of trust have been found to be reliable. Christophersen and
Konradtn [12] used a four-item questionnaire to evaluate trust in online stores. These four items
are all included in our trust measurement. McKnight and Chervany [45] provided five categorised
characters to define trust including competence, predictability, benevolence, integrity and other
(such as shared understanding). All five characters are essentially reflected in our measurement but
competence is mapped to functionality, and integrity is mapped to dependability and faith. The
exact questions and their source in past work is as follow:

Functionality[4, 12, 32, 45, 61]–the competence of the optimisation solver to solve the
problem: “To what extent does the optimisation solver perform its function properly?”
Understanding[26, 45, 58, 61]–user understanding of the solver’s operation: “How well do
you understand the strategy used by the solver to find this solution?”
Dependability[4, 12, 32, 37, 45, 49, 61]–how reliable the solver is: “To what extent can you
count on the optimisation solver to do its job?”
Consistency[4, 37, 45, 49]–how consistently the solver performs on different problems: “To
what extent does the optimisation solver perform consistently?”
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Satisfaction[26, 32, 45, 61]–acceptability of the solutions: “How satisfied are you with the
performance of the optimisation solver?”
Faith[12, 37, 45, 49]–confidence of the solvers’ performance in solving future problems:
“What degree of faith do you have that the optimisation solver will be able to cope with
future problems?”
Trust[12, 32]–the overall degree of trust in the solver: “Overall, how much do you trust the
optimisation solver?”

This experiment was a mixed design with one between-subjects variable and two within-subjects
variables (see Fig. 6). Specifically, the between-subjects variable was expertise with two levels:
experts and non-experts. The two within-subjects variables were feedback and solver quality.
Feedback had two levels: feedback and no feedback. Solver quality also had two levels: good solver
and poor solver.
We generated different problem instances by fixing the central depot but randomly selecting

customer locations around the central depot. Customers’ service times as well as time windows
were assigned randomly but manually refined afterwards by trying to overlap close-by customers’
time windows to control difficulty of problem instances.
For each combination of solver and feedback we showed the solution to 4 problem instances.

These had different levels of difficulty, varying in the number of customers and electricians. We
presented 2 easy problem instances, and then 2 hard instances, with the intent of allowing users to
build their understanding of the solver. After piloting, we chose easy problem instances to have 8
customers and 3 electricians and hard problem instances to have 15 customers and 4 electricians.
Thus, in the experiment we had 28 participants × 4 optimisation solvers × (4 solutions × 1

solution evaluation question + 7 solver evaluation questions) = 1,232 responses (44 responses per
participant).

4.3 Procedure
After answering a short questionnaire capturing demographic information and expertise, partici-
pants were guided through the calibration process of the screen-based eye tracker and instructed
to start screen recording. Both calibration and recording were done using the Tobii Pro Studio
software.
Participants were then trained in the use of the system. Training was designed to ensure that

all participants thoroughly understood the goal of the optimisation process and could evaluate
the quality of a solution returned by a solver. A short video provided a brief introduction to
the experimental problem and interface. The video could be paused or replayed at any time and
participants were encouraged to ask questions. Afterwards a hands-on exercise was given in
which participants were asked to develop a routing solution to a problem with 5 customers and 2
electricians using drag and drop to assign customers to electricians. Participants were then shown
a sample solution with 5 questions to further test their understanding of the experiment’s problem
context. Next participants were asked to inspect a good solution and a poor solution to a problem.
At the end of training participants were asked to inspect 8 sample questions (1 solution evaluation
question + 7 solver evaluation questions). They were informed that the 8 questions would be exactly
the same during the experiment and they were encouraged to clarify their understanding.
Next, during the experiment participants were asked to evaluate the four optimisation solvers.

For each solver they were shown the sample solutions on a separate page and asked to rate their
quality. Participants were then asked to answer the 7 questions evaluating trust in the solver. A
7-point Likert scale was used to capture answers to both evaluation tasks. Latin square design
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Fig. 7. Study 1 aggregate solution quality, solver functionality, understanding, dependability, consistency,
satisfaction, faith and overall trust measures. For the x-axis labels the first letter represents the solver quality:
G – Good ; P – Poor and the second letter represents the feedback option: N – Non-feedback; F – Feedback. So
G–N represents the good solver without feedback.
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was used to balance the order of solvers. The recording was stopped after participants finished all
evaluations.

Finally, a post-questionnairewas administered. Responseswere audio recorded. The questionnaire
had eight questions. The first question asked participants to explain their evaluation process. The
second question clarified whether different strategies were used for evaluating easy and hard
problems. The next four questions asked about the usefulness of both the objective line chart and
the display of intermediate solutions in animated sequences for easy and hard problems. The next
question asked for feedback about the interface design. The last question asked participants how
useful they found the easy and hard problems for solver evaluations.

4.4 Data Analysis and Discussion
Quantitative Analysis
The ratings of the four solutions shown for each solver were summed to give an aggregate solution
quality for each solver. This rating as well as the seven solver measures for the two solvers with
and without feedback are shown in Fig. 7.
Residuals of solution quality were normally distributed (visually checked with histogram and

Q—Q plots). The variances of the participants’ expertise were equal (Levene’s test). The residuals
of the seven individual measures were normally distributed except consistency, however, using a
Box–Cox transformation consistency was corrected and normally distributed. Therefore we used
a three-way mixed ANOVA with multilevel linear models to analyse the impact solver feedback
and expertise had on solution quality and the other seven measures. Simple effects analysis was
performed using linear mixed-effects models if any significant interaction was found. Otherwise
we conducted Tukey’s HSD post hoc tests on significant main effects [22]. The statistical analysis
is shown in Fig. 8. Details of the statistical analysis can be found in the appendix.

The key findings are as follows:
• The analysis found that participants ranked solution quality, functionality, dependability,
faith and trust significantly higher with feedback than without for the poor solver but not
for the good solver.

• The analysis found that participants ranked understanding significantly higher with feedback
regardless of solver.

• Experts ranked satisfaction significantly higher with feedback than without only for the poor
solver. The satisfaction ratings from non-experts were similar but not significant.

• The only significant difference between experts and non-experts was that non-experts ranked
functionality significantly higher than experts for the poor solver but not for the good solver.

Qualitative Analysis
We collected qualitative feedback from the post-questionnaire at the end of the study asking partic-
ipants specifically about the usefulness of the objective line chart: 21 out of 28 (75%) participants (9
experts and 12 non-experts) thought the objective line chart is useful, 5 out of 28 (17.86%) partici-
pants (4 experts and 1 non-expert) thought it is not that useful and they did not use it during the
study. All the remaining 2 (7.14%) participants (1 expert and 1 non-expert) were neutral about its
usefulness.
Some participants thought the objective line chart was a good indication that the optimisation

solver was functioning properly. One participant said:
“Of course, it (the objective line chart) is [useful]. I can see that it is decreasing always.
Always a good sign at least. It’s a sign that the optimisation is going in the right direction.”

Another participant commented:
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“It is clearly dropping down, which convinces me that the solver is doing its work properly.”
Some participants thought the objective line chart helped solution evaluation and comparison. One
stated:

“Providing more information to help me verify and decide [the quality of a solution].”
Another one said:

“Yes, it is useful because we can visualise the distance and compare it with the other
solutions.”

Other participants believed the objective line chart helped them build up confidence about the
underlying algorithm. One participant told us:

“It helps me to develop a lot of confidence about the algorithm by looking at that [objective
line chart].”

Another participant also confirmed:
“Having a progress bar is definitely provides me with [a] certain confidence.”

Eye-tracking Analysis
Eye-tracking data was collected from 24 of the 28 participants. Data was not collected for the
remaining 4 participants because they completed the study at another location without the eye
tracker. Eye-tracking revealed that 18 out of the 24 (75%) participants spent on average more than
4 seconds looking at the objective line chart for each problem instance. While this was only a
small part of the time spent evaluating the quality of a solution for each problem instance, on
average nearly 100 seconds, this confirms that most participants did look at the objective line chart.
We believe the short duration most likely reflects the simplicity of the chart, allowing it to be
comprehended in a short glance.

Discussion
The most important finding of the analysis is that adding feedback significantly increased partici-
pants’ rating of the poor solver for solution quality and for functionality, dependability, satisfaction,
faith and overall trust. However, feedback did not significantly affect rating of the good solver: this
is perhaps due to a ceiling effect (participants gave high ratings to all criteria for the good solver).
This generally supports our hypothesis that providing feedback about intermediate solutions will
increase user trust in an optimisation system. This hypothesis is also supported by the qualitative
analysis with most participants finding the objective line chart useful and their comments suggest-
ing that showing the improvement of solution quality in intermediate solutions during the search
process helped to build their confidence in the solver.
Our findings are in accord with Ribeiro et al. [58] who reported that providing explanations of

a machine learning classifier was useful in understanding the performance of the classifier. Such
explanations can also be regarded as a form of feedback. Using feedback to increase the transparency
of a system is critical in building trust in the system [26], especially in high-consequence domains,
such as medical treatment [11, 40].

What was unexpected was that providing feedback led to an unwarranted increase in the level of
trust for the poor solver. Examination of Figure 11 reveals that without feedback participants recog-
nised the superior performance of the good solver. Once feedback was provided they marginally
increased their ranking of the good solver but greatly increased their ranking of the poor solver to
the point that they gave almost identical rankings to the poor and good solver with feedback.
In fact, many participants rated the solution quality and overall trust of the poor solver with

feedback as equal to, or even higher, than the rating they gave for the good solver with and without
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Fig. 8. Study 2 mixed designs overview.

feedback. From our observations of participants’ ratings, 6 out of 28 participants (3 experts and
3 non-experts) believed the poor solver with feedback produced solutions at least as good as the
good solver with feedback. Whereas only 2 out of 28 participants (both non-experts) thought
the poor solver without feedback produced solutions as good as or better than the good solver
without feedback. Furthermore, 13 out of 28 participants (6 experts and 7 non-experts) trusted the
poor solver with feedback more than the good solver with feedback and 13 out of 28 participants
(not exactly the same participants, 5 experts and 8 non-experts) also trusted the poor solver with
feedback more than the good solver without feedback. In contrast, only 5 participants (1 expert
and 4 non-experts) trusted the poor solver without feedback more than the good solver without
feedback. This is surprising, and shows that providing feedback on intermediate solutions can lead
to over-trust even by experts.
This suggests that we need to be cautious about providing feedback to increase system trans-

parency and user trust in optimisation tools. In such tools it may be difficult for the user of the
system to easily evaluate the quality of a solution provided by the system and so feedback can lead
to over-trust in a poorly performing system. Therefore, a better approach for providing correctly
calibrated trust in an optimisation system may be to provide the user with a way to more readily
evaluate the quality of solutions produced by the solver. In the next study, we explore whether
allowing the user to interactively modify solutions as a way of better understanding their quality
will lead to more accurately calibrated trust.

5 STUDY 2: EFFECT OF INTERACTION ON TRUST
The second user study investigated whether trust is affected by allowing the user to interact with
a solution in order to better understand its quality. We used an additional medium solver which
returned solutions 15% worse than those of the good solver. Each solver was shown in three
conditions: no interactive manipulation of solutions (No Interaction (NI)); fully manual interaction
(Manual Interaction (MI)); and interaction with re-solve (Semi-automatic Interaction (SI)). Because
of the number of conditions a between-participant design was used. The tasks and protocol were
the same as the first study.

5.1 Participants and Setting
We recruited 30 participants in total including students, researchers from universities and employees
from outside organisations. All 30 participants had normal or corrected-to-normal vision without
any colour vision impairment. 22 participants were males, and the other 8 participants were females.
25 participants were aged 20 to 29, the other 5 participants were aged 30 to 39. As in the first
study we distinguished between experts and non-experts. We divided the 15 expert and 15 non-
expert participants equally between the three different conditions: no, semi-automatic and manual
interaction. In the end, we had 5 experts and 5 non-experts in each condition. The study was run
on a MacBook Pro notebook with a 2.6 GHz Intel i5 processor and a 13-inch screen (1280 × 800).

We did not collect eye-tracking data but took a screen recording of each experiment.
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Fig. 9. Study 2 aggregate solution quality, total solution evaluation time (in seconds) and the seven solver
measures. For the x-axis labels the first letter represents solver quality: G – Good ; M – Medium; P – Poor and
the second double letters represent experimental condition: SI – Semi-automatic Interaction; MI – Manual
Interaction;NI –No Interaction. So G–SI represents the good solver in the semi-automatic interaction condition.
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5.2 Data and Design
We used the same approach as in Study 1 to generate different problem instances. However, we
added one more customer to the easy problem instances to make it more challenging for the
interaction in this study. We did not change the difficulty of hard problem instances because they
were difficult enough to evaluate based on our observations from Study 1. Again easy problem
instances were presented before hard instances.

The training was extended to explain solution manipulation to participants in the semi-automatic
and manual interaction conditions at the start of the hands-on exercises. They were encouraged to
use interaction freely during the experiment.

A post-questionnaire asking participants about the effect of interaction on trust was administered
to those conditions providing solution interaction. Eight questions were asked for both the SI and
MI conditions. The first two questions asked participants about the evaluation processes of solutions
and solvers respectively. The third question aimed to clarify whether different strategies were used
to evaluate easy and hard problems. The next question asked participants about the usefulness
of manually changing a solution to evaluate its quality. The following two questions focused on
whether manually changing a solution could increase participants’ confidence and trust in solutions
and solvers. The last two questions asked for general feedback on the interface and the usefulness
of easy and hard problems for solver evaluations. For the SI condition, three additional questions
were included. Participants were asked about the usefulness of re-optimising a solution as well as
whether re-optimisation could increase the confidence and trust in solutions and solvers.

Participants’ responses were timed and a maximum of 5 minutes was allowed for each problem
instance, to control the overall experiment time.
Similar to Study 1, this experiment also used mixed designs (see Fig. 8). More specifically, the

between-subjects variables were condition and expertise. Condition had three levels: Semi-automatic
Interaction (SI), Manual Interaction (MI) and No Interaction (NI). Expertise had two levels: experts
and non-experts. The single within-subjects variable was solver quality with three levels: good
solver, medium solver and poor solver.

This experiment was also between- and within-subjects. We had 30 participants × 3 optimisation
solvers × (2 difficulty levels × 3 repetitions × 1 solution evaluation question + 7 solver evaluation
questions) = 1,170 responses (39 responses per participant).

5.3 Data Analysis and Discussion
Quantitative Analysis
The ratings for the 6 solutions shown for each solver were summed to give an aggregate solution
quality for each solver (range 6–42). The time to evaluate the 6 solutions was summed to give a
total evaluation time for each solver. These, together with the seven solver rating measures (as per
Study 1) for the three solvers and three conditions are shown in Fig. 9.
Residuals of the aggregate solution quality were normally distributed (visually checked with

histogram and Q—Q plots). Residuals for the total evaluation time were not normally distributed.
Therefore, a log transformation was used to correct residuals to follow a normal distribution.
Variances of the experimental conditions were equal for both aggregate solution quality and total
evaluation time (Levene’s test). The residuals of the seven solver rating measures were normally
distributed except faith, however, using a Box–Cox transformation faith measures were corrected
and normally distributed. Both faith and trust measures violated the homogeneity assumption with
Levene’s test, however, conducting Welch’s tests on both, we were able to correct for the violations.

We used a three-way mixed ANOVA with multilevel linear models to analyse aggregate solution
quality, total evaluation time and the other seven solver measures. As in the first experiment, simple
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effects analysis was performed using linear mixed-effects models if any significant interaction
was found. Otherwise we conducted Tukey’s HSD post hoc tests on significant main effects [22].
The statistical analysis is shown in Fig. 11. Details of the statistical analysis can be found in the
appendix.

The key findings are as follows:
• The analysis found that participants ranked both solution quality and trust significantly
higher in the semi-automatic interaction condition than the no interaction condition for the
good solver.

• For the medium solver, however, participants ranked solution quality, functionality, satisfac-
tion and trust significantly lower in the semi-automatic interaction condition than the no
interaction condition.

• The analysis found that participants ranked solution quality, functionality, satisfaction and
trust significantly higher for the good solver compared with the poor solver and for the
medium solver compared with the poor solver in all three interaction conditions: semi-auto-
matic, manual and no interaction conditions.

• The analysis found that participants ranked solution quality, functionality, satisfaction and
trust significantly higher for the good solver than the medium solver in both the semi-auto-
matic and manual interaction conditions but not in the no interaction condition.

• Non-experts spent significantly longer time evaluating solutions in both the semi-automatic
and manual interaction conditions than the no interaction condition. However, there was no
significant difference for experts.

Qualitative Analysis
Qualitative feedback from the post-questionnaire administered to the 20 participants from the
semi-automatic and manual interaction conditions, revealed that 17 out of 20 (85%) participants
(8 experts and 9 non-experts) thought manually changing a solution via interaction can increase
trust in good optimisation solvers. The remaining 3 participants (2 experts and 1 non-expert) were
neutral about its effect on trust.

Most participants indicated that their trust increased because they could not find a better solution
by manipulating the solution returned by the solver. One participant said:

“If the solver gives a good first impression and I don’t find any improvements [to the
solution] after I test and verify my own, I am more sure that this solver is really good and I
trust it more even though there might still exist better solutions.”

Another participant commented:
“Because you are still sceptical about it (the solution) and want to try it yourself, you realise
you cannot actually find anything better [after you tried] which makes you believe this is a
good solver.”

While a third participant told us:
“Verifying makes you confident. Confidence leads to trust.”

Nearly all of the participants (9 out of 10, 4 experts and 5 non-experts) from the semi-automatic
interaction condition believed that re-optimisation was useful. They felt that re-optimisation made
it easier, faster and more reliable to evaluate the quality of a solution. The same 9 participants also
believed that re-optimisation could increase trust in good optimisation solvers. The remaining
participant was neutral about the usefulness and the effect of re-optimisation on trust.
We also analysed the impact of re-optimisation on whether participants could find a better

solution. We first consider the semi-automatic interaction conditions. For solutions produced by the
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good solver, there was only one example of a participant finding a better solution using re-optimi-
sation. The distance was shortened by 3.8%. For the medium solver, participants were able to find
better solutions for 3 out of 6 problem instances. On average 0.7 better solutions were found using
re-optimisation, with the distance shortened by 7.7%. Whereas for the poor solver, participants
found better solutions for 5 out of 6 problem instances. Two were found using re-optimisation.
Distances were shortened by 10.5% on average.

On the other hand with manual interaction condition, no participant found a better solution for
the good solver and on average only 2.4 out of 6 solutions from the medium solver were improved
by participants. This is slightly less than for the semi-automatic condition. And for the poor solver,
on average 3.6 out of 6 solutions were improved in the manual interaction condition. Again, this is
less than for the semi-automatic condition. Overall, this accords with the participant feedback and
suggests that the semi-automatic interaction condition with the re-optimisation allows the user to
more readily discover if a solution is poor than with the manual interaction condition.

Discussion
Our results support our hypothesis that allowing interactive modification of the solution will lead
to better calibrated trust. We see that both the semi-automatic and manual interaction conditions
helped participants to distinguish between the good and medium solver while in the no interaction
condition this was more difficult. For instance, none of the 30 10 participants trusted the medium
solver more than the good solver in the semi-automatic interaction condition. However, there were
5 participants (1 expert and 4 non-experts) who trusted the medium solver over the good solver in
the no interaction condition.

However, if the solver is sufficiently bad then regardless of whether interaction is allowed, people
will generally recognise the poor solution quality and not trust it. Nonetheless, while none of the
participants trusted the poor solver over the good solver in the semi-automatic condition there
were 2 participants (1 expert and 1 non-expert) who rated the poor solver higher than the good
solver in the no interaction condition.
Our findings are explained by the fact that trust is dynamic, and it can be earned via verifica-

tion [26]. At the beginning all solvers are trusted equally. Trust increases when the user cannot
find a way to improve the solution returned by the solver, but decreases when they can. Participant
feedback indicates that interaction makes it easier for the users to verify the solution. We would
also expect that re-optimisation makes it easier than purely manual interaction to find when a
solution is sub-optimal. This explains why semi-automatic interaction leads to the greatest trust in
the good solver, and the least trust in the medium and poor solvers, while no interaction leads to
the lowest trust in the good solver and greatest trust in the poor and medium solvers.
In general our findings are in accord with those of Glass et al. [26] who investigated user trust

in adaptive agents. They found that “trust is an earned property” and that users would prefer to
supervise the system and interact with the system in a mixed-initiative manner in order to verify
its behaviour. This is a good reflection of our findings: the ability to interactively verify solution
quality is a powerful way of building trust.
In related work, Ribeiro et al. [58] found that providing explanations allows users to calibrate

their trust in machine learning classifiers. Specifically, users’ trust dropped substantially when the
explanation for the bad classifier was revealed. In Ribeiro’s experiment, domain experts had the
necessary knowledge to verify the correctness of a classification result from its explanation. How-
ever, producing an explanation as to why a particular solution is optimal in interactive optimisation
is more difficult and such an explanation may not be understood by the end-user.
Here we have shown that allowing the user to modify the solution returned by the solver and

immediately see the quality of the solution can support solver verification as it allows the user to

, Vol. 1, No. 1, Article . Publication date: December 2018.



Increasing User Trust in Optimisation through Feedback and Interaction 23

check that they cannot find a better solution. In a sense, by allowing the user to explore the local
neighbourhood of the solution, it provides a local explanation [42] of the local optimality of the
solution.
This technique works because the user has a good understanding of the optimisation problem

being solved and so feels confident in understanding how to modify a solution and in comparing
the quality of two solutions. Thus it seems applicable to optimisation applications where the user
has reasonable knowledge of the problem domain and there is a well-defined objective function.
This means that it is less applicable to multi-criteria objective problems and for evaluating ma-
chine-learning applications even when they use optimisation as it is unlikely that the user will
have sufficient knowledge to manipulate a solution or to compare the quality of two solutions.

Much previous work on increasing trust in optimisation systems has focused on providing textual
explanations of why a solution is optimal. We believe that our alternative approach of allowing the
user to interactively modify a solution and the result has two advantages. Supporting manual mod-
ification is relatively simple and does not require solver modification while creating explanations is
more complex and may not work with all solving techniques. Secondly, we conjecture that users
will find the results of the manipulation easier to understand than a textual explanation though
this needs to be confirmed.

6 LIMITATIONS AND FUTUREWORK
One potential limitation of our two studies was the definition of expertise. An expert had both fa-
miliarity with optimisation and familiarity with vehicle routing problems, potentially confounding
these two kinds of expertise. To check for this we re-ran the analysis for both studies using a single
factor definition by only considering either familiarity with optimisation or familiarity with vehicle
routing problems. This led to only minor differences and did not change any findings we have
identified and reported. Nonetheless, the expertise factor is self-reported and therefore subjective.
A limitation of our studies is that there was no consequence to our participants of mistakenly

trusting a solution. That is they were not “vulnerable.” While this is a limitation of many HCI
experiments investigating trust, e.g. [20, 59] it does mean that, at least in situations in which the
consequences for the user of getting it wrong are high, our experimental findings may not carry
over. Further studies are required to explore this.

A further limitation was the relatively small sample size in each of the conditions.
We also only considered a single kind of optimisation problem. While it was chosen to be repre-

sentative of the kind of resource allocation problems that optimisation is commonly used for, it
would be useful to verify the results with other kinds of optimisation problems. In particular it
would be interesting to consider optimisation problems with a multi-criteria objective.

Future work also includes examining other possible factors affecting trust. Our two studies could
necessarily only look at a limited range of feedback and user interaction. As discussed earlier, we
would expect a user’s understanding of the algorithm and belief that it is capable of achieving
their goals to impact on trust. Indeed our first study suggests that this is true. We would also like
to investigate whether a high-level explanation of how the solver works builds trust or whether
providing interactive visualisations to show the exploration of the search space can further improve
the transparency of an optimisation system and hence increase trust. It also seems fruitful to explore
the impact of other kinds of user interaction. For instance, allowing the user to check the perfor-
mance of the solver on simpler problems and verify that it finds the answer they expect. It would
also be interesting to see the impact of interactive multi-objective optimisation and interactive
evolutionary algorithms on user trust.
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7 CONCLUSION
We have presented two controlled user studies investigating two important factors affecting user
trust in optimisation systems. In our first user study we found that providing feedback about
intermediate solutions and the objective function leads to increased trust in a poor solver producing
low-quality solutions. In fact, we found that it can lead to over-trust. Specifically, providing feedback
leads many people, including experts, to increase trust in a poor solver to such a degree that they
trust it as much as a good solver that consistently produces high quality solutions.

In our second study we found that allowing the user to semi-automatically manipulate solutions
returned by an optimisation system leads to a better calibration of trust. This is an important finding
because it provides the first empirical support for the belief by some optimisation researchers [47]
that interaction leads to greater trust.
Our results have significant implications for the design of new optimisation systems. They

strongly suggest that if optimisation systems are to be trusted by users, then implementors will
have to move away from the current “black-box” model, in which the user simply inputs the problem
data and accepts the output solution. Instead, systems should support interactive exploration of
solutions, allowing the user to gain a better understanding of their quality, and hence build users’
(justified) trust in the system. Our results also suggest that optimisation systems should be careful
if providing information about intermediate solutions and progress to the final solution as this may
lead to unwarranted trust in the solver.
One limitation of the two studies is that they only considered a single kind of optimisation

problem. While it was chosen to be representative of the kind of resource allocation problems
that optimisation is commonly used for, it would be useful to verify the results with other kinds
of optimisation problems. It would also be interesting to consider optimisation problems with a
multi-criteria objective.

Future work also includes examining other possible factors affecting trust. As discussed earlier,
we would expect a user’s understanding of the algorithm and belief that it is capable of achieving
their goals to impact on trust. Indeed our first study suggests that this is true. We would also like
to investigate whether a high-level explanation of how the solver works builds trust or whether
providing interactive visualisations to show the exploration of the search space can further improve
the transparency of an optimisation system and hence increase trust.
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A STATISTICAL ANALYSIS
A.1 Study 1: Effect of Feedback on Trust
We follow the conventional statistical results reporting: if a higher-order interaction is significant,
we interpret the interaction using contrasts. We do not and should not interpret its main effects
and lower-order interactions. We only interpret the main effects when an interaction effect is not
significant [22].
There are two main paths in Fig. 10. Specifically, the first path was part 1 → part 2 when

interactions were significant. Significant interaction effects were reported in part 1, a simple effect
analysis was performed and presented in part 2 to further interpret each significant interaction.
The other path was part 3 → part 4 when interactions were not significant but main effects were
significant. Significant main effects are presented in part 3, and a follow-up post hoc Tukey’s HSD
is presented in part 4, allowing us to interpret each main effect. When both interaction and main
effects were not significant, they were not included in Fig. 10 and were excluded from analysis.

Understanding. The main effect of feedback was significant on how well participants believed
they understood the solver, χ 2(1) = 11.36,p = .0007 (see Fig. 10, part 3). Tukey’s HSD tests
revealed significant differences between the feedback condition and the no-feedback condition,
z = 3.61,p = 0.0003 (see Fig. 10, part 4, outline C; Fig. 11). This tells us that participants believe
they have a better understanding of how the solver works when feedback is provided.

, Vol. 1, No. 1, Article . Publication date: December 2018.



28 Liu et al.

Interaction Effect

Feedback *  
Solver Quality

Solution Quality: !2(1) = 13.63, p = .0002 ***
Functionality: !2(1) = 9.02, p = .0026 **
Dependability: !2(1) = 8.09, p = .0045 **

Faith: !2(1) = 9.23, p = .0024 **
Trust: !2(1) = 6.87, p = .0088 **

Solver Quality *
Expertise Functionality: !2(1) = 6.53, p = .0106 *

Feedback *
Solver Quality *

Expertise
Satisfaction: !2(1) = 5.90, p = .0151 *

Main Effect

Feedback Understanding: !2(1) = 11.36, p = .0007 ***

Solver Quality
Understanding: !2(1) = 20.48, p < .0001 ***

Consistency: !2(1) = 6.01, p = .0142 *

Simple Effects Analysis

Feedback
[Feedback *

Solver Quality]

Poor Solver

Solution Quality (Feedback > No Feedback): z = 3.961, p < .0001 ***
Functionality (Feedback > No Feedback): z = 3.78, p = .0002 ***
Dependability (Feedback > No Feedback): z = 3.52, p = .0004 ***

Faith (Feedback > No Feedback): z = 4.35, p < .0001 ***
Trust (Feedback > No Feedback): z = 3.69, p = .0002 ***

Good Solver
Expertise

[Solver Quality *
Expertise]

Poor Solver Functionality (Non-expert > Expert): z = 2.022, p = .0431 *

Good Solver

Feedback
[Feedback *

Solver Quality *
Expertise]

Expert
Poor Solver Satisfaction (Feedback > No Feedback): z = 3.78, p = .0002 ***

Good Solver

Non-expert
Poor Solver Satisfaction (Feedback > No Feedback): z = 1.70, p = .0888 .

Good Solver

Post Hoc TukeyHSD

Understanding (Feedback > No Feedback): z = 3.61, p = .0003 ***

Understanding (Good Solver > Poor Solver): z = -4.95, p < .0001 ***
Consistency (Good Solver > Poor Solver): z = -2.458, p = .0139 *
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Fig. 10. Study 1 statistical analysis results. Part 1 is the interaction effect analysis. Part 2 is the simple effects
analysis. Part 3 is the main effect analysis. Part 4 is the post hoc analysis. Noteworthy findings are indicated
by a red rectangular outline: A, B and C. Significance codes are as follows: p ⩽ 0.001 (***); p ⩽ 0.01 (**); p ⩽
0.05 (*); p ⩽ 0.1 (.).

The main effect of solver quality was also significant on how well participants believed they
understood the solver, χ 2(1) = 20.48,p < .0001 (see Fig. 10, part 3). Tukey’s HSD test revealed
significant differences between the good solver group and the poor solver group, z = −4.95,p <
0.0001 (see Fig. 10, part 4, outline C and Fig. 11). Participants believe they have a better understanding
of the good solver compared with the poor solver. This was not expected. Perhaps it is because
the good solver tends to produce “cleaner” solutions with fewer routes overlapping and more
cluster-like routes compared with the poor solver.
None of the three possible interactions were significant on participants’ understanding of the

solver. The interaction of feedback and solver quality was not significant, χ 2(1) = 0.80,p = .3702,
the interaction of feedback and expertise was not significant, χ 2(1) = 0.10,p = .7529, and the
interaction of solver quality and expertise was not significant either, χ 2(1) = 1.14,p = .2864.

Consistency. The main effect of solver quality was significant on solver consistency, χ 2(1) = 6.01,
p = .0142 (see Fig. 10, part 3). Tukey’s HSD test revealed a significant difference between the good
solver and the poor solver, z = −2.458,p = .0139 (see Fig. 10, part 4 and Fig. 11). This indicates
that participants believed that the good solver performed more consistently than the poor solver.
In reality, both the good solver and the poor solver were consistent in producing similar-quality
solutions at all times. We conjecture that participants believed that the poor solver was inconsistent
because they did not recognise that all of the solutions produced by the solver were bad. Thus they
believed it was producing both good and bad solutions, hence inconsistent. On the other hand,
they believed that the good solver generally produced good solutions, so they believed it behaved
consistently.
None of the three possible interactions were significant on solver consistency. The interaction

of feedback and solver quality, χ 2(1) = 0.03,p = .8727, the interaction of feedback and expertise,
χ 2(1) = 1.60,p = .2065, the interaction of solver quality and expertise, χ 2(1) = 0.34,p = .5611,
were not significant.
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Fig. 11. Study 1 interaction graphs. [] indicates the interaction effect.

Solution quality. The interaction feedback × solver quality was significant on participants’ ratings of
multiple criteria (see Fig. 10, part 1; Fig. 11) including their evaluation of solution quality. Specifically,
we found that the feedback × solver quality interaction was significant on participants’ ratings of
solution quality, χ 2(1) = 13.63,p < .0002 (see Fig. 10, part 1). The main effects of both feedback,
χ 2(1) = 4.09,p = .0432, and solver quality, χ 2(1) = 64.39,p < .0001, were significant.
Simple effects analysis with contrasts was conducted to further interpret the significant inter-

action between the feedback and solver quality. These contrasts compared the solution quality
ratings at each level of solver quality compared to feedback at each level. The first contrast revealed

, Vol. 1, No. 1, Article . Publication date: December 2018.



30 Liu et al.

a significant difference between the feedback and no-feedback conditions for the poor solvers,
z = 3.961,p < .0001 (see Fig. 10, part 2, outline A). The second contrast looked for differences
between the feedback and no-feedback conditions for the good solvers. This contrast was not
significant, z = −0.764,p = .445, and tells us that unlike the poor solvers, feedback does not
affect people’s judgement of solution qualities of the good solvers. Thus we see that providing
feedback leads to an increased ranking of the solution quality for the poor solver, but that it does
not significantly change the ranking of solutions produced by the good solver which is already
very high (see Fig. 11).

Trust. The pattern for participant ranking of trust is very similar to that for solution quality. For
participants’ ratings of solvers’ trust, the feedback × solver quality interaction was significant,
χ 2(1) = 6.87,p < .0088 (see Fig. 10, part 1). The main effects of both feedback, χ 2(1) = 4.93,p =
.0264, and solver quality, χ 2(1) = 32.45,p < .0001, were significant.

Again we performed simple effects analysis with contrasts to interpret this significant interaction.
We found a significant difference in participants’ ratings of solvers’ trust between the feedback and
no-feedback conditions for the poor solver, z = 3.69,p = .0002 (see Fig. 10, part 2, outline A) but
the difference of trust between feedback and no-feedback for the good solver, was not significant,
z = 0.145,p = .885. Thus we see that providing feedback leads to an increased ranking of trust in
the poor solver, but that it does not significantly change the level of trust in the good solver which
is already very high (see Fig. 11).

Functionality, Dependability, Faith. Participant ranking of solver functionality, dependability and
faith exhibited the same pattern as their ranking of quality of solution and trust: feedback increases
their ranking for the poor solver but does not change their ranking of the good solver which is
already very high (see Fig. 10, part 1; Fig. 11).

Satisfaction. We also found that feedback× solver quality interactionwas significant for participants’
ranking of solver satisfaction, χ 2(1) = 11.35,p = .0008. However, this time we also found that
the feedback × solver quality × expertise interaction was significant on participants’ ratings of
solver satisfaction, χ 2(1) = 5.90,p = .0151 (see Fig. 10, part 1; Fig. 11). Simple effects analysis
with contrasts was used to break down this interaction. Specifically, these contrasts compared
participants’ ratings of solver satisfaction at each level of solver quality compared to the category
of expertise compared to feedback at each level (See Fig. 11). The first contrast revealed that
there was a significant difference between the feedback conditions for experts of the poor solvers,
z = 3.78,p = .0002 (see Fig. 10, part 2, outline B). This tells us that experts are more satisfied with
the poor solvers when feedback is provided compared with the no-feedback poor solvers. The
second contrast looked at the differences between the feedback conditions for non-experts of the
poor solvers, z = 1.70,p = .0888 (see Fig. 10, part 2, outline B). This contrast was noticeable but not
significant and tells us that non-experts are more satisfied with the poor solvers with feedback than
the poor solvers without feedback. The third and forth contrasts looked at the differences between
the feedback conditions for both experts, z = −1.868,p = .0618, and non-experts, z = 1.282,p = .2,
of the good solvers respectively. Both contrasts were not significant. The third contrast tells us that
there is a tendency for experts to be more satisfied with good solvers when feedback is provided
compared with no feedback. However, there is no such tendency for non-experts. This may be
because experts can make better use of the feedback about intermediate solutions to understand
how the solver functions and how well the solver performs.
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Fig. 12. Study 2 statistical analysis results. The layout is as follows: Part 1 is the interaction effect analysis; Part
2 is the simple effects analysis; Part 3 is the main effect analysis; Part 4 is the post hoc analysis. Noteworthy
findings are indicated by a red rectangular outline: A, B and C. Significance codes are as follows: p ⩽ 0.001
(***); p ⩽ 0.01 (**); p ⩽ 0.05 (*); p ⩽ 0.1 (.).
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Fig. 13. Study 2 interaction graphs. [] indicates the interaction effect.

A.2 Study 2: Effect of Interaction on Turst
We report our results using the same conventions as Study 1. We interpret higher-order interactions
when they are significant rather than lower-order interactions and their main effects. We only
interpret main effects when they are significant but an interaction effect is not significant.
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Understanding, Dependability, Faith. Participant ratings of solver understanding, dependability and
faith in the solver exhibit the same general pattern. Below we analyse participant ratings of solver
understanding in detail. The analysis for the two other ratings is similar.
The interaction of solver quality × experimental condition × participants’ expertise was not

significant, χ 2(4) = 8.06,p = .0893, for ratings of solver understanding. None of the lower-order
interactions were significant: χ 2(2) = 2.02, p = .3642 (solver quality × expertise); χ 2(4) = 2.65,p =
.6182 (solver quality × condition); and χ 2(2) = 2.20,p = .3324 (expertise × condition).
However, the main effect of solver quality was significant, χ 2(2) = 33.09,p < .0001 (see Fig. 12,

part 3). Tukey’s HSD revealed that there were significant differences between solver pairs: z =
−2.665,p = .021 (good and medium); z = −6.603,p < .001 (good and poor); z = −3.939,p <
.001 (medium and poor) (see Fig. 12, part 4 and Fig. 13). Participants believed they had the best
understanding of how the good solver works and a relative better understanding of the medium
solver than the poor solver.
Analysis of participants’ ratings of dependency and faith, reveals the same pattern (see Fig. 12,

part 3 and part 4, and Fig. 13, for more details). That is, the better the solver the more highly they
rank its reliability and its future performance (see Section 4.2 for detailed explanations of both
criteria).

Trust, Solution quality, Functionality, Satisfaction. Participants’ ratings of solver trust, solution
quality, solver functionality and satisfaction with the solver exhibited the same general pattern.
Again we analyse only one of these ratings in detail: overall trust in the solver.

The condition × solver quality × expertise interaction was not significant, χ 2(4) = 4.35,p = .3612,
for solver trust. The lower-order interaction of solver quality × expertise was not significant either,
χ 2(2) = 5.26,p = .0719. However, the interaction of condition × solver quality, χ 2(4) = 12.15,
p = .0162 was significant (see Fig. 12, part 1). The main effects of condition, χ 2(2) = 2.38,p = .3035,
and expertise, χ 2(1) = 3.13,p = .0768, were not significant. But the main effect of solver quality
was significant, χ 2(2) = 65.48,p < .0001. We first look at the condition × solver quality interaction.

We used the same simple effects analysis with contrasts approach as in Study 1 to break down
this interaction. Specifically, this group of contrasts compared participants’ ratings of the overall
solver trust at each level of solver quality to the interaction condition at each level with a focus on
conditions. The first contrast revealed a significant difference between the semi-automatic and no
interaction conditions for the good solver, z = −2.434,p = .0396 (see Fig. 12, part 2, outline A and
Fig. 13). This tells us that the semi-automatic interaction makes people trust the good solver more
compared with no interaction.

The second contrast revealed a significant difference between the semi-automatic and no inter-
action conditions for the medium solver, z = 2.357,p = .0483 (see Fig. 12, part 2, outline A; Fig. 13).
Unlike the good solver, people trust the medium solver less in the semi-automatic interaction
condition than the no interaction condition.
The third contrast investigated differences between the semi-automatic and no interaction

conditions for the poor solver. Unlike the previous two contrasts, this contrast was not significant,
z = 1.622,p = .236, and tells us that people do not trust the poor solver in any of the conditions.

Overall, the first two contrasts showed that semi-automatic interaction can help people better
calibrate their trust in the good and medium solvers.

Other contrasts looked at differences between either the semi-automatic and manual interaction
conditions, or the manual and no interaction conditions for all three solvers. None of the contrasts
were significant. This suggests that manual interaction is not as good as semi-automatic interaction
at allowing users to calibrate their trust due to the lack of re-optimisation ability, which plays an
important role in the interactions.
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The other group of contrasts investigated participants’ ratings of the overall solver trust at each
level of condition compared to solver quality at each level with a focus on solver qualities. The
first contrast revealed that there existed a significant difference between the good solver and the
medium solver in the semi-automatic interaction condition, z = −6.352,p < .001 (see Fig. 12,
part 2, outline B; Fig. 13). This tells us that people trust the good solver more than the medium
solver with the semi-automatic interaction. Similarly, the second and third contrasts looked for
differences between the good solver and the poor solver, and between the medium solver and the
poor solver. Both contrasts were significant, z = −9.881,p < .001 (good and poor solver contrast),
z = −3.529,p = .0012 (medium and poor solver contrast) (see Fig. 12, part 2, outline B; Fig. 13).
Putting everything together, these three contrasts tell us that people trust the good solver the most,
then the medium solver, and trust the poor solver the least. Thus, people have the right level of
trust for each solver in the semi-automatic interaction condition.
The next three contrasts investigated differences between the three solver pairs: the good and

medium solver; the good and poor solver; the medium and poor solver in the manual interaction
condition. All three contrasts were significant, z = −2.727,p = .0177 (good and medium solver),
z = −6.921,p < .001 (good and poor solver), z = −4.195,p < .001 (medium and poor solver) (see
Fig. 12, part 2, outline B). Again, these three contrasts tell us that people trust the good solver the
most, then the medium solver, and trust the poor solver the least. Thus, people have the right level
of trust for each solver in the manual interaction condition.
Using the same approach, another three contrasts looked for differences between the same

three solver pairs in the no interaction condition. Two of the three contrasts were significant,
z = −4.149,p < .001 (good and poor solver), z = −3.247,p = .0033 (medium and poor solver) (see
Fig. 12, part 2, outline B; Fig. 13). So far the trend is the same and tells us that people trust the good
solver more than the poor solver, and trust the medium solver more than the poor solver. However,
the contrast between the good and medium solver was not significant, z = −0.902,p = .6391.
The tells us that in the no-interaction condition, unlike the other two conditions, people do not
significantly trust the good solver more than the medium solver.
We see an identical pattern for ratings of solution quality, solver functionality and satisfaction

with the solver.
This is very interesting. Based on the above analysis and looking at Figure 13, we can see that in

all three conditions the good solver and medium solver are ranked above the poor solver. For the
non-interaction condition, however, participants find it difficult to distinguish between the good
and medium solver. But with the semi-automatic and manual interaction conditions, they are able
to determine that the good solver is better than the medium solver. This supports our hypothesis
that interaction will lead to better calibrated trust.
Furthermore, we see that the difference in ranking between the three solvers is the least for

the non-interaction condition and the most for the semi-automatic condition. This suggests that
the semi-automatic condition allowed participants to better calibrate their trust than the manual
interaction condition.

Evaluation time. Now we will briefly look at the participants’ total evaluation time. The condition ×
solver quality × expertise interaction was not significant, χ 2(4) = 2.01,p = .7343. The lower-order
interactions of condition × solver quality, χ 2(4) = 1.48,p = .8304, and solver quality × expertise,
χ 2(2) = 1.00,p = .6070, were not significant either. However, the condition × expertise interaction
was significant, χ 2(2) = 8.27, p = .0160 (see Fig. 12, part 1). Both the main effects of condition,
χ 2(2) = 1.41,p = .4945, and expertise, χ 2(1) = 2.94,p = .0865, were not significant. But the main
effect of solver quality was significant, χ 2(2) = 10.09,p = .0064.
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Again we used simple effects analysis with contrasts to break down the condition × expertise
interaction. These contrasts compared participants’ total evaluation time at each level of expertise
to condition at each level. The first contrast revealed a significant difference between the semi-
automatic and no interaction conditions for non-experts, z = −2.792,p = .0145 (see Fig. 12, part
2, outline C; Fig. 13). This tells us that non-experts spent more time to evaluate solutions in the
semi-automatic interaction condition than the no interaction condition. The second contrast looked
for differences between the manual and no interaction conditions for non-experts. This contrast
was significant, z = −3.390,p = .0021, and tells us that non-experts took more time to evaluate
solutions in the manual interaction condition than the no interaction condition. This suggests that
when given the ability to interact with a solution non-experts take longer to evaluate than if they
cannot interact with it.
However, we did not find significant differences between all three conditions for experts: z =

1.006,p = .573 (semi-automatic and no interaction); z = 0.842,p = .677 (manual and no interaction);
z = 0.164,p = .985 (semi-automatic and manual interaction). This suggests that experts are more
rigorous than non-experts when evaluating solutions in the no interaction condition and spend
more time trying to determine if it is a good solution. This is also supported by the significant
contrast between experts and non-experts in the no interaction condition, z = −4.509,p < .0001
(see Fig. 12, part 2; Fig. 13). We did not find any significance from other contrasts, which tells us
that both experts and non-experts spent a similar amount of time evaluating solutions in both of
the interaction conditions.
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