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Fig. 1. Rotate or Wrap, centre-row: average traffic accidents per hour on Thursdays in Manhattan in 2016 [42]. bottom-row: average
traffic accidents per hour across the week in Manhattan in 2016.

Abstract—In this paper, we report on a study of visual representations for cyclical data and the effect of interactively wrapping a bar
chart ‘around its boundaries’. Compared to linear bar chart, polar (or radial) visualisations have the advantage that cyclical data can be
presented continuously without mentally bridging the visual ‘cut’ across the left-and-right boundaries. To investigate this hypothesis and
to assess the effect the cut has on analysis performance, this paper presents results from a crowdsourced, controlled experiment with
72 participants comparing new continuous panning technique to linear bar charts (interactive wrapping). Our results show that bar
charts with interactive wrapping lead to less errors compared to standard bar charts or polar charts. Inspired by these results, we
generalise the concept of interactive wrapping to other visualisations for cyclical or relational data. We describe a design space based
on the concept of one-dimensional wrapping and two-dimensional wrapping, linked to two common 3D topologies; cylinder and torus
that can be used to metaphorically explain one- and two-dimensional wrapping. This design space suggests that interactive wrapping
is widely applicable to many different data types.

Index Terms—Cyclic temporal data, cylindrical topologies, toroidal topologies, interaction techniques, bar charts, polar charts,
crowdsourced experiment

1 INTRODUCTION

While often perceived as linear, many temporal phenomena are intrinsi-
cally cyclical following cycles of day and night, seasons, or biorhythms.
Common examples of such data include time series of traffic flow over
a twenty-four hour period; average temperature or birth rate over 12
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months; or electrical and sound wave amplitude profiles. Non-temporal
data can also be cyclical, such as average wind strength from different
compass directions.

Often, cyclical data is presented in traditional linear bar and line
charts. However, this ignores the cyclic nature of the underlying data
and so understanding of cyclical phenomena in these charts may be
hindered by ‘cuts’ in the visualisation; i.e. the analyst needs to mentally
‘join’ the left and right sides of the visualisation together. This can
make it hard to understand trends across the boundary of the chart as
well as to compare bars that are far apart in the chart but whose data
is temporally close, e.g. comparing hour 23 with hour 0 on a 24-hour
chart (Fig. 1a) [38].

One common way to overcome this problem is to represent cyclical
data in polar (a.k.a. radial) visualisations. Like an analogue clock,
polar visualisations show time in a circle, allowing for continuous



representation of patterns and trends in any part of the cyclical data.
Often, these time series are visualised using the length of bars, organ-
ised around the centre of the polar visualisation (Fig. 1b). However,
previous studies [1, 11, 44] have shown that comparing lengths of bars
in polar visualisation is less effective than comparing bar heights in
traditional linear bar charts. Likely (and in accordance with position
encoding differences identified by Cleveland and McGill [16]), this
is due to bars in the linear charts being parallel and aligned to a com-
mon baseline, as opposed to being at different angles and aligned to a
circular base.

In this paper, we explore the trade-off between the continuity pro-
vided by polar visualisations versus the ease of height comparison on
linear charts, and—most noteworthy—the use of novel interactions for
polar and linear chart representations of cyclical data, to work around
their respective limitations. That is, for linear charts, we implement
a “wrapped” panning interaction, such that panning left causes marks
which disappear from the left side to reappear on the right (and vice
versa when panning right). Thus, bars that might otherwise be at op-
posite ends of the chart can be brought closer together. We have not
seen such “wrapped panning” applied to charts before, but it is inspired
by recent promising results in wrapped presentations that untangle and
facilitate the interpretation of the node-link representations [14, 15].
We also implement a similarly novel ‘rotate’ gesture for polar charts,
which allows the user to bring any bar to the top or centre bars for more
aligned comparison.

Our first contribution in this paper is to address the following
open questions: [Q1] Does adding interactive wrapping to linear bar
charts improve their effectiveness? [Q2] How effective is interactive
wrapping for linear bar charts compared with static polar bar charts?
[Q3] Does adding interactive rotation to polar bar charts improve
their effectiveness? To investigate these questions, we report on a
controlled user study with 72 participants comparing four different
visualisations of cyclic data: (a) linear bar chart (without interactive
wrapping); (b) linear bar chart with interactive wrapping; (c) polar bar
chart (without interactive rotation); and, for completeness, (d) polar
bar chart with interactive rotation. Our results show that for reading
intervals or comparing values across the cut, interactive wrapping of
linear bar charts significantly outperforms static linear or polar charts
in terms of error.

Inspired by these results, our second contribution is to investigate
the design space for (interactive) wrapped visualisations. We describe
how wrapping can be applied to other visualisations for non-spatial
cyclical data or abstract/relational data that have not previously been
considered in this way, such as horizon graphs, Sankey diagrams, ad-
jacency matrices, and multi-dimensional scaling. Our design space
considers not only one-dimensional wrapping (as in bar charts) but also
two-dimensional wrapping where a visualisation can be wrapped both
horizontally as well as vertically. This is applicable, for example, to
cyclical horizon charts. While the one-dimensional wrapping described
above can be considered to exist in a cylindrical topology (before being
projected to the screen), two-dimensional wrapping implies a toroidal
topology (as per Fig. 1-bottom). This topological understanding of
wrapping visualisations provides a unified view of wrap and rotate
interactions with linear and polar charts and suggests new wrapped
interaction designs (e.g. Fig. 1d).

The full study material, illustrative examples of interactive wrapping
or rotation are available in the supplementary file as well as the Open
Science Foundation: https://osf.io/r8cw4/.

2 RELATED WORK

2.1 Visualising Temporal Data
Despite extensive consideration from designers of visualisation tech-
niques, temporal data visualisation continues to pose challenges for
effective representation. Various surveys of temporal data visualisation
exist, citing general techniques [2], timelines [10], spatio-temporal data
exploration techniques, for attributed trajectories [41], and more gen-
erally [4], and more abstract quantitative data that can be represented
through space-time cubes [5]. Interactive techniques for exploring gen-
eral temporal data (without any particular allowance for cycles) range

from multilevel zooming to scale to large data or minute detail [46] to
sophisticated visual organisation of sequences of state data (such as
brain activity) [6].

Data for many temporal phenomena is characteristically cyclical,
as nature follows the cycles of day and night, climate and seasonality,
as well as biochemical processes that are continuous cycles. In the
case of time series, polar visualisations have often been used either as
simple cycles with bars or a line, multiple layers of bars or lines (e.g.,
silhouette graphs [22], overlaying multiple lines, e.g., one for every
year, or a ‘timeline’ spiralling outside the centre of the polar chart [40].
A particular way to visualise cycles and repetition in temporal data
is to abstract temporal change through multidimensional reduction
methods [7].

2.2 Empirical Evidence

Several studies have investigated error performance with bar charts,
finding that people are more accurate at comparing adjacent bars than
bars that are further apart [16, 23, 38]. Comparing temporal data across
24 hours with static linear or polar bar charts, Waldner et al. [44]
found that for low-level tasks (e.g., locating extrema, reading values
and comparing values at fixed 12-hour separation) a linear layout was
significantly faster than a polar layout. Other studies on time series
visualisation also found that for positional and length judgements,
people make less error using linear bar charts than when using polar
charts for tasks of finding trends [1], locating extrema [33,44], locating
features at specific times [11, 44], comparing values [20], or proportion
judgement [37]. However, there is no empirical evidence comparing
the readability of cyclical temporal intervals split across the ‘cut’ on
bar charts, compared with their corresponding polar bar charts showing
the continuity.

To cope with the complexity of temporal data, interaction has been
investigated. For example, pan and zoom along a linear timeline [35],
mouse hover and showing hints on a linear chart or circular chart [1],
and a study of interaction and single-scale selection techniques on a
linear timeline [36] have been presented. However, we are not aware of
wrapped panning (as defined in Sec. 3.1), being evaluated with cyclical
time-dependent data.

In summary, while many tasks have been tested, such as trend detec-
tion [1, 45], pairwise group comparison [1], and pairwise single value
comparison [44], no study has particularly focused on bars far apart
but which could be brought closer through wrapping. Our contribution
to this corpus of knowledge is the particular study of interaction for
wrapping in linear bar charts and rotation in radial charts. This task
suggests looking at intervals across both ends of a linear bar chart
as well as bars that are ‘far appart’ in both chart types that could be
brought ‘closer together’ in interactive linear bar charts.

2.3 Interaction and Wrapping

By wrapping, we refer to the fact that some visualisations can be
perceived as continuous when connecting their left and right and/or
their upper and lower boundaries (Fig. 1 top-centre). Perhaps, the best
known example for wrapping is the game Asteroids where a player
can leave the screen on, e.g., the right side, and reappear on the left.
Similar to radial visualisations, a bar chart showing cyclical data, e.g.,
per month of the year, may well be understood as wrapping vertically
placing the value for December adjacent to that of January. In our
work, we investigate interactive panning as one possibility to wrap
a linear visualisation. This notion is different from other notions of
wrapping in visualisations, such as “DuBois Wrapping” [28], which
wraps over-sized bars in bar charts into zig-zag lines.

For two-dimensional wrapping (wrapping vertically and horizon-
tally), recent studies have shown benefits for exploring clusters in
networks [14, 15]. These visualisation techniques can be understood
as surface projections of a torus topology. The studies found that static
wrapped visualisation of networks were more error-prone than static
unwrapped network diagrams for edge and path following tasks but
that interactive panning (wrapping) improved error rate over static and
non-wrapped (traditional) node-link layouts. Inspired by these results,
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we aim to provide further evidence about the potential of both wrap-
ping and interaction in exploring visualisations that can be seen as
projections of cylinder (one-dimensional wrapping) and torus (two-
dimensional wrapping). To that end, our paper concludes by describing
a general design space for many types of visualisations for cylindrical
and torodial topologies (Sec. 4).

3 USER STUDY: WRAPPED TIME SERIES READABILITY

This section reports on a controlled user study with 72 participants
investigating the performance of linear and interactive wrapped charts
to understand time series data. The study aims to answer our questions
Q1 to Q3 stated in the introduction. Apart from the interactive wrapping,
our study differs from past work by focusing on tasks that require
considering multiple bars: pair comparisons and aggregation across
intervals (trend identification and average value estimation), as we
expect these to be the tasks most affected by wrapping in bar charts and
rotational centring in polar charts.

3.1 Techniques
In our study, we compare four techniques for the visualisation of cycli-
cal data: static bar, interactive bar, static polar and interactive polar.
A video included with the supplementary material demonstrates these
interaction techniques.

• STATICBAR represents a traditional static bar chart, as in Fig. 1a.
• STATICPOLAR represents a traditional polar bar chart, arranging

bars in a radial fashion, as in Fig. 1b.
• INTERACTIVEBAR is a linear bar chart (Fig. 1a) where a user can

drag horizontally using mouse or touch interaction to pan the visu-
alisation, such that the chart wraps around from the left to the right
and vice versa. This wrap interaction is intended to avoid the issue
of bars at the extreme left of the chart being difficult to compare
against bars at the extreme right, and making it difficult, for example,
to detect trends that continue across this arbitrary cut. The user can
simply bring such bars back together by re-centring.

• INTERACTIVEPOLAR is a polar bar chart like STATICPOLAR
(Fig. 1b) while a user can drag on any part of the polar bar chart to
rotate the chart. The chart spins around the centre in a clockwise or
counterclockwise fashion as the user pans accordingly. This rotate
interaction addresses a specific problem we came across when pilot-
ing our study, that bars in a polar chart seemed easier to compare
when they could be centred around the vertical centre line. When a
pair of bars is centred in this way, the two bars have the same vertical
baseline, meaning their heights can be compared directly. When they
are off-centre, they are at an awkward angle. Rotation allows the user
to centre the two bars they are interested in.

3.2 Hypotheses
We group our hypotheses by our research questions Q1-Q3. Hypotheses
have been preregistered with the Open Science Foundation: https:
//osf.io/9k5bm.

[Q1] Does adding interactive wrapping to linear bar charts im-
prove their effectiveness?

• H1.1-error: INTERACTIVEBAR has less ERROR than STATICBAR.
This is observed by the existing study results that people perform
more accurately when comparing adjacent bars than bars that are
far apart [38]. With our interactive technique, it allows them to
bring bars that are far apart closer.

• H1.1-time: STATICBAR has less TIME than INTERACTIVEBAR
as the latter requires panning.

• H1.2-error: INTERACTIVEBAR has less ERROR than INTERAC-
TIVEPOLAR.

• H1.2-time: INTERACTIVEBAR has less TIME than INTERAC-
TIVEPOLAR.

[Q2] How effective is interactive wrapping for linear bar charts
compared with static polar bar charts?

• H2-error: INTERACTIVEBAR has less ERROR than STATICPO-
LAR.

[Q3] Does adding interactive rotation to polar bar charts improve
their effectiveness?

• H3.1-error: INTERACTIVEPOLAR has less ERROR than STAT-
ICPOLAR since participants are able to rotate the chart to best
solve the task.

• H3.1-time: STATICPOLAR has less TIME than INTERACTIVEPO-
LAR since the latter potentially involves panning.

Our last hypothesis is about user preference (H4): user prefers
INTERACTIVEBAR to STATICBAR, STATICPOLAR, or INTERACTIVE-
POLAR since INTERACTIVEBAR facilitates comparisons across the cut
while allowing to best compare bar heights.

3.3 Tasks
We designed three tasks to compare our four techniques. The tasks are
motivated by existing time series visualisation research (e.g., [1, 3, 11,
17, 20, 44]) and graphical perception task typology [12]. However, they
did not look at the effect of interactive panning nor did they look at
a group of bars that span across the cuts. We focus on the particular
effect of analysing data across the cuts in linear static and interactive
bar charts. To that end, we created two levels of difficulty for each
task: unwrapped (for bar charts) or centred (for polar charts) and
wrapped (for bar charts) or uncentred (for polar bar charts). In the
wrapped condition, the user is required to analyse the data across the
cuts, compared to the unwrapped, centred, and uncentred conditions.
Examples for all tasks and conditions are shown in Fig. 2.

• TREND IDENTIFICATION: “What describes the highlighted se-
quence of bars best, e.g., continuously increasing/continuously de-
creasing/neither?” (Fig. 2-TREND IDENTIFICATION) The partici-
pants were asked to identify the trend of a highlighted set of adjacent
bars. The timeout for this task was 5 seconds, inspired by our pilot
studies. We recorded participants’ response with multiple-choice
questions with 4 options with continuous decreasing, continuous
increasing, neither, or unsure. We created 10 trials for this task per
technique, 3 of them were monotonically increasing, 3 were mono-
tonically decreasing intervals, 4 were neither. We fixed the length of
all intervals to be 6 bars.

• PAIRWISE GROUP COMPARISON: “Which group of bars, A or B,
has the higher total values?” (Fig. 2-PAIRWISE GROUP COMPAR-
ISON) The timeout for this task was 10 seconds. We gave this task
more time, as it required mental aggregation of a group of bar height.
We recorded participants’ response with multiple-choice questions
with 3 options with A, B, and unsure. We created 10 trials for this
task per technique, balancing the answers of A and B.

• PAIRWISE SINGLE VALUE COMPARISON: Which bar, A or B, has
the higher value? (Fig. 2-PAIRWISE SINGLE VALUE COMPARISON)
The timeout for this task was 5 seconds. We created 12 trials for this
task per technique. We controlled for the distance between targeted
bars, i.e., 6 trials per technique for Short (2 bars apart) and 6 trials
per technique for Long (6 bars apart). We balanced the answers of
A and B. We recorded participants’ response with multiple-choice
questions with 3 options with A, B, and unsure.

3.4 Visual Configuration
The width of the bar chart was fixed to 628 pixels, which was the same
as the median grid line of the circumference of a polar chart with 200-
pixels radius, as seen in Fig. 1-middle column and Fig. 1-right column.
The y-axis scale of the bar chart was same as the y-axis scale in the polar
chart, i.e., 200 pixels. This setting was similar to prior visualisation
studies comparing polar and bar charts [44]. For the study, we removed
all tick marks, grid lines and labels, such that visual comparison is
based purely on bar height. We used a monochrome colour for the
bars, as Adnan et al. [1] found colour visual encoding makes the effect
of linear or polar chart negligible for time series visualisation. For
the polar chart, we used an inner circle with a radius of 50 pixels for
showing a curve. This marks the bars in each task, as shown in Fig. 2.
The corresponding visual encoding was an underline for bar charts. To
support TREND IDENTIFICATION, each chart was accompanied by a
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Fig. 2. Examples of data sets and visual stimuli for all three tasks used in the study: TREND IDENTIFICATION(left), PAIRWISE GROUP COMPARI-
SON(centre) and PAIRWISE SINGLE VALUE COMPARISON(right). Sub figures (a)-(d) show the individual conditions for wrapped and unwrapped as
well as centred and uncentred across both visualisation techniques.

grey arrow indicating the direction of time inside the visualisation. For
the linear bar charts, the arrow was shown from the left to the right
on the bottom of the chart. We implemented each technique using
D3.js [9].

3.5 Data
Our stimuli were generated from New York hourly traffic accident
datasets between 2013 and 2016 [42]. We selected Brooklyn, Bronx,
Manhattan, Queens, and Staten Island borough data. These data show
a non-smooth distribution of the aggregated number of traffic accidents
over 24 hours, which we felt would provide a suitable and ecologically-
valid data set for our study. The same data has been used in prior time
series visualisation studies comparing linear and polar charts [44]. To
generate cyclical temporal data for the study tasks, we first aggregated
the hourly traffic accidents on a monthly basis for each borough. We
then obtained average hourly traffic accident datasets in 24 hours (i.e.,
24 data points) for a given borough, month and year to obtain hundreds
of candidate sample data sets. We selected from these candidates for
our task stimuli, controlling for difficulty based on pilot testing, as
follows:

• TREND IDENTIFICATION: Across all samples we restricted the
candidates to instances with a monotonically increasing or decreasing
set of six adjacent bars, with a minimum height difference of 1-
2% (i.e., small but apparent on the displays tested). For neither
monotonically increasing nor decreasing instances, there is no other
monotonic sequences of more than two bars. Furthermore, we added
one quality control (obvious) trial per technique with a much larger
minimum height difference of greater than 20%.

• PAIRWISE GROUP COMPARISON: The difference of total values
between two groups was 5-15% of bar chart height. For the quality
control trial, the difference is set to be greater than or equal to 20%
of bar chart height.

• PAIRWISE SINGLE VALUE COMPARISON: The difference of
heights between the two bars was 1-1.5% of bar chart height. For the
quality control trial, the difference is set to be greater than or equal
to 20% of the bar chart height.

3.6 Experimental Design
We decided on a within-subject design with 4 techniques × 3 tasks. We
used 10 repetitions for TREND IDENTIFICATION, PAIRWISE GROUP
COMPARISON, and 6 repetitions for PAIRWISE SINGLE VALUE COM-
PARISON-Short and 6 repetitions for PAIRWISE SINGLE VALUE COM-
PARISON-Long. We inserted a quality control trial for each technique
per task to check participants’ attention. We used 4 practice trials for
each technique per task. This gives a total of 47 trials × 4 techniques
= 188 trials per participant. We used a full-factorial design to coun-
terbalance the learning effect of four techniques (24 orderings). Each
recorded trail has a timer associated with the task type, as described in

Sect. 3.3. We expected the study to complete within 40 minutes. The
order of wrapped, unwrapped, centred, and uncentred questions for
each task was randomised across tasks per technique. Each participant
went through the same order of trials. Each trial used a randomly
selected dataset from 5 borough data that satisfied the constraints as
described in Sect. 3.5. Therefore, none of the same graphics appear
twice throughout the study.

We used equal numbers of trials for each of these four groups. We
recorded task-completion time (TIME), task-error (ERROR), and sub-
jective user preference (PREF) as dependent variables across all the
tasks.

3.7 Participants and Procedure

We crowdsourced the study via both convenience sampling and the
Prolific Academic system [31]. The participants on Prolific Academic
platform have been reported producing data quality comparable to
Amazon Mechanical Turk [32]. Many time series visualisation studies
were in fact crowdsourced [3,11,17,18,34,35,44]. Recent visualisation
studies were deployed over the Prolific platform [34].

We hosted the study on our web server application. We set a pre-
screening criterion on performance, i.e., minimum approval rate of
95%, and minimum number of previous submissions of 10. We also
limited our study to desktop users with larger screens. We provided
a payment of £5 (i.e. a rate of £7.5/h) to Prolific participants. This
is considered good payment according to the Prolific Academics plat-
form. We recorded 72 participants who passed quality control tasks and
completed the study. This comprised 3 full counterbalanced blocks of
participants. 48 participants from the Prolific group and 24 participants
from local sampling (recruited via email). 23 were females, 47 were
males and 2 preferred not to disclose their gender. The age of partici-
pants is between 18 and 50. Each participant went through all of the 4
techniques with the order assigned by the software with the following
procedure. First, they completed a tutorial explaining the techniqueand
task.

For TREND IDENTIFICATION, participants were instructed to read
the trend from a set of adjacent bars highlighted by either an underline
(for bar charts) or a curve (for polar charts). Examples of monotonically
increasing, monotonically decreasing, and neither were given during
the training as well as in practice trials. An example of neither is
shown in Fig. 2-TREND IDENTIFICATION(a-d) and Sect.1.1 of the
supplementary file. During the training, when the participant’s answer
was incorrect they would be shown the same practice trial again until a
correct answer was given.

For INTERACTIVEBAR and INTERACTIVEPOLAR, an animated im-
age demonstrating the wrapping or rotation interaction was shown for
the task. Participants were encouraged to try the interaction themselves
with the same example as the one in the animation. Following that, par-
ticipants were required to successfully complete 4 practice trials before
proceeding to the recorded trials. For recorded trials, each trial was first



loaded on a participant’s browser before the software started the timer.
Each participant went through the same task order, i.e., TREND IDEN-
TIFICATION→PAIRWISE GROUP COMPARISON→PAIRWISE SINGLE
VALUE COMPARISON-Short→ PAIRWISE SINGLE VALUE COMPARI-
SON-Long.

The web link to the experimental software is available online:
https://observablehq.com/@kun-ting/rotate-or-wrap.

Fig. 3. Statistically significant results of TREND IDENTIFICATION

Fig. 4. Statistically significant results of PAIRWISE SINGLE VALUE COM-
PARISON (Short distance - 2 bars apart)

3.8 Results
We report on the results of 72 participants from both Prolific group
and convenience sampling group. All of these participants passed the
attention check trials, completed the training and recorded trials. This
resulted in 9,216 trials. We excluded attention check trials in the anal-
ysis, as they used a much looser constraint than recorded trials, as
described in Sect. 3.5. Therefore, we have equal numbers of wrapped,
unwrapped trials for bar charts, and equal numbers of centred and
uncentred trials for polar charts for each task in the analysis. Since
the distribution of ERROR and PREF of each technique did not follow
a normal distribution, we used Friedman’s non-parametric test and
Tukey’s posthoc pairwise comparison to identify significant differences
between STATICBAR, INTERACTIVEBAR, STATICPOLAR, and INTER-
ACTIVEPOLAR. The confidence interval is 95%. Since TIME of each
technique was normally distributed, tested with Shapiro’s normality
test and visually checked by Q-Q plot, we used ANOVA repeated mea-
sures and Tukey’s posthoc pairwise comparison to test significance. We
report on the most significant findings for TREND IDENTIFICATION
and PAIRWISE SINGLE VALUE COMPARISON-Short task visually in
Fig. 3 and Fig. 4. The results of error bar graphs are shown in Fig. 5

and Fig. 6. The detailed statistical results can be found in Sect. 1.3 of
the supplementary file.

3.9 Qualitative User Feedback

The majority of participants reported more confidence in using IN-
TERACTIVEBAR across all tasks. Some participants mentioned that
panning the chart brings bars closer to one another, making it signifi-
cantly easier to inspect bars and come to a decision. Some participants
reported more confidence in STATICBAR than STATICPOLAR, citing
that the STATICPOLAR looked more confusing and was harder to read.
Other participants mentioned they had to turn their head or neck to spot
the answer and static polar charts caused confusion about comparing
the bars, and therefore they ranked it the worst.

To our surprise, STATICBAR was not significantly favoured over
INTERACTIVEPOLAR. Some participants mentioned the ability to
rotate allows them to see in different angles and make them feel more
confident in the analysis. Some other participants mentioned the polar
charts provided a more panoramic view. STATICBAR made it hard to
focus when seeing broken ranges or bars that are located far apart.

3.10 Study Conclusion

Overall, the results of our study indicate that interactive wrapping leads
to significant improvements in error over static representations for
TREND IDENTIFICATION and PAIRWISE SINGLE VALUE COMPARI-
SON, despite the additional time required to pan.

Returning to our questions from the Introduction, to answer (Q1)
“Does adding interactive wrapping to linear bar charts improve their
effectiveness?”, we begin by noting that contrary to findings from past
studies [1, 11, 44] (that static linear bar charts outperform static polar
bar charts), we found that for TREND IDENTIFICATION across the ‘cut’
in linear bar charts, the polar representation is actually significantly
better in terms of error rate. However, introducing interaction to linear
bar charts reverses this result. We can conclude that the INTERACTIVE-
BAR clearly outperformed STATICBAR for TREND IDENTIFICATION
and PAIRWISE SINGLE VALUE COMPARISON tasks in terms of er-
ror, especially for trials where the bars being compared are separated
by the ‘cut’. These results allow us to reject the null-hypothesis for
H1.1-error for some tasks. We found that INTERACTIVEBAR results
in less errors than INTERACTIVEPOLAR for some tasks, rejecting the
null-hypothesis for H1.2-error and sometimes is significantly faster,
rejecting the null-hypothesis for H1.2-time.

While we found that STATICBAR was faster than INTERACTIVEBAR
across all tasks except PAIRWISE SINGLE VALUE COMPARISON-Short
(rejecting the null-hypothesis for H1.1-time for some tasks), the time
spent actually moving the charts was a notable fraction of the trial time.
We see from the textured parts of bars in Fig. 5-TREND IDENTIFICA-
TION and Fig. 5-PAIRWISE SINGLE VALUE COMPARISON-Short that
for INTERACTIVEBAR the interaction time in TREND IDENTIFICATION
and PAIRWISE SINGLE VALUE COMPARISON-short tasks were greater
than the time difference compared to STATICBAR. We observed that
most people use the interaction once, moving INTERACTIVEBAR or
STATICPOLAR so that they could comfortably solve the task. While it
is tempting to assume the time difference is due to the extra time spent
performing the interaction, it is impossible to know whether people
are able to actively reason about the visualisation during interaction,
suggesting an interesting direction for future study.

We also found that INTERACTIVEBAR significantly outperformed
STATICPOLAR in terms of error for TREND IDENTIFICATION and
PAIRWISE SINGLE VALUE COMPARISON (Q2). We can thus reject
the null-hypothesis for H2-error for these tasks. We conclude that
adding interactive wrapping to bar charts—while incurring a cost in
terms of the time spent interacting—decreases errors compared to static
polar versions which technically do not require rotation to avoid the
cut-problem. This trend is similar across all tasks but significant only
for two.

Eventually, while we did not find any significant result that inter-
action reduces errors in polar charts (Q3), we found STATICPOLAR
was significantly faster than INTERACTIVEPOLAR across all tasks, we
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Fig. 5. Quantitative results for ERROR and TIME for all tasks and techniques: bar charts (red) and polar charts (blue). Static techniques are indicated in
a lighter colour. Textured parts of some bars indicate the fraction of time used for panning (INTERACTIVEBAR) and rotating (INTERACTIVEPOLAR).The
detailed statistical significant results are available in the supplementary file.

Fig. 6. Subjective User ranking for all tasks and techniques (lower is bet-
ter). The statistical significant results are available in the supplementary
file.

therefore accept the null-hypothesis for H3.1-error and reject the null-
hypothesis for H3.1-time. We also found that INTERACTIVEBAR was
significantly preferred to STATICBAR, STATICPOLAR, and INTERAC-
TIVEPOLAR. We therefore reject the null-hypothesis for H4.

In summary, we take these results as strongly encouraging interactive
wrapping for linear bar charts, especially since the upfront cost of
adding an interactive wrapping technique is small and the interaction is
not required to read the bar charts.

4 DESIGN SPACE OF WRAPPED DATA VISUALISATIONS

Encouraged by the results of our study, this section generalises the
concept of interactive wrapping. First, we consider data types that are
cyclical in more than one dimension, and hence have a fundamentally
different topology to those considered so far. These include time series
data that have multiple levels of periodicity (e.g. weekly as well as
daily). Second, we consider quite different data types such as networks
represented by node-link diagrams [14, 15] or matrices [21] and high-
dimensional data visualised by self-organising maps [26, 43] or multi-
dimensional scaling. We can describe these types of two-way wrapped
visualisations as toroidal, since topologically the visualisations are

connected not only at the sides, but also at the top and bottom. We now
introduce a design space which maps the possibilities for cylindrical
and toroidal topology against the possibilities for mapping the topology
to a two-dimensional visualisation (projection) and the affordances for
interactive panning of the resulting visualisation (pannability).

Thus, our design space is the composition of three dimensions:
Topology describes whether a visualisation (technique) is mapped onto
a cylinder (Fig. 1-top) or torus (Fig. 1-bottom).
Projection describes the projection method used to obtain a 2-
dimensional representation from the 3-dimensional topology. A side
projection results in a rectangular representation (Fig. 1-middle col-
umn), while a top projection results in a concentric radial (or “polar”)
representation (Fig. 1 right column).
Pannability describes the directions which the user is able to pan
the visualisation. To some extent, this is determined not only by the
topology and projection dimensions but also by the type of data and
conventions within the application domain.

In Sect. 4.3, we give a gallery of pannable visualisations that emerge
from these design dimensions. These are described more fully in that
section, but here we briefly illustrate how these examples relate to our
design dimensions. For the pannability dimension, we consider a side-
projected cylinder which is only pannable in one dimension, but the
orientation may be horizontal (Fig. 7a-b, Fig. 8) or vertical (Fig. 9). On
a top-projected cylinder (Fig. 7c), the user rotates the resulting circular
visualisation, so the panning is rotational. A torus topology supports
two-dimensional panning, either horizontal and vertical (Fig. 10) for
a side projection, or rotational and radial panning for a top projection
(Fig. 11). For some toroidal projections of certain data types, it makes
sense to further constrain the pannability. For example, a symmetric
matrix could be panned both horizontally and vertically, but it usually
makes sense to keep the matrix diagonal centred (Fig. 12).

In the following, we motivate our design space by reflecting on the
wrap and rotate interactions we evaluated in our user study. This topo-
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(c) PCP top-projection

Fig. 7. Cylindrical interaction for standard visualisations. (a) Bangkok’s
average monthly rainfall from 2008 to 2015: a timeseries wrapping hori-
zontally and allowing to perceive patterns within individual time periods
(e.g,. year.) [27]; (b) a parallel coordinates plot (PCP) with cyclical
dimensions in side-projection; (c) the PCP in top-projection radial view.

(a) Two connected lines from the Singapore metro map, causing a cycle.

(b) The map from above, wrapped around a cylinder topology and side-projected.

(c) Result of panning the map above to the left.

Fig. 8. Example of cylindrical wrapping: transportation map [30]

logical perspective allows us to see not only that these one-dimensional
wrap and rotate operations share the same topology (a cylinder, see 4.1),
but also that we can extend both the linear wrap and polar rotate inter-
actions into two dimensions by seeing how they can be implemented
in a toroidal topology (see Sect. 4.2). This topological understanding
results in a very general design space that encompasses sophisticated
wrapping interactions and can suggest novel applications.

As our design space is meant as a conceptual model, rather than
an affordance to 3D rendering, we focus exclusively on the 2D pro-
jections that can be created from these views. Our design space can
be a powerful tool to: (a) understand relations between visualisations
(e.g., linear and polar bar charts), (b) apply interactive wrapping to a
range of visualisations, and (c) to create new visualisations by mapping
existing visualisations onto cylinder and torus visualisations to obtain
side and top projections. In Section 4.3, we explore other types of wrap-
ping visualisations with underlying cylindrical or toroidal interaction
topologies.

4.1 Cylindrical Interaction Techniques:
Wrap or Rotate

The interaction techniques described in Section 3 can be thought of as
stemming from the connectivity in cyclical data being mapped to a 3D

(a) Cyclical links are circular. (b) Cylindrical projection to al-
low continuous vertical panning.

Fig. 9. A Sankey Diagram with cycles.

Fig. 10. Example for torus horizontal and vertical torus wrapping, individ-
ually.

topology, as per Fig. 1a-b. For the data with a single cyclical domain,
the underlying topology we consider for both linear and polar charts is
a cylinder. Both the wrap and rotate interactions can be thought of as a
rotation of the 3D cylindrical surface before projecting back to a 2D
visualisation along one of two possible view angles of the cylinder, as
follows.

4.1.1 Side Projection: Wrap Interaction for Bar Charts

A cyclical bar chart can be wrapped around the cylinder such that the
full time period covers the circumference of the cylinder, and the range
of the bars representing values will extend to the height of the cylinder.
A side-view of the cylinder would show half the chart (only the half
of the time domain facing the viewer). We can rotate the cylinder to
choose the time interval that is centred in the field of view. To recover
a 2D view of the whole data domain, we can “slice” the cylinder on
the side farthest from the viewer and flatten the resulting sheet, as per
Fig. 1a.

Fig. 11. Example of a top-down view onto a torus topology, allowing to
move elements from the centre of the visualisation to its outer boundary.



Fig. 12. Effects of diagonal panning on an torus-topology ma-
trix. Using the same row/column ordering: (a) random start
and end row/column shows two clusters (blocks along the diag-
onal), (b) horizontal panning now shows a single cluster (top-
left), and (c) panning again highlights strongly correlated mpg

row/column. Taken from http://www.sthda.com/english/wiki/

visualize-correlation-matrix-using-correlogram

Fig. 13. Examples of torus panning on a network using the random parti-
tion nework data set [19] with already known clustering information: (a)
traditional (unwrapped) network on a 2D-plane; (b, c) two configurations
wrapped network laid-out on a 2D torus, using the algorithm presented
in [14].

4.1.2 Top Projection: Rotate Interaction for Polar Charts

For a polar chart, imagine shrinking the base of the cylinder such that
it forms a cone, with the bars extending from the narrow base, outward
to the wider top. The polar chart is then simply a view of the cone with
the point facing the viewer. Rotation of the cone now changes which
bar is centred at the top.

4.2 Toroidal Interaction Techniques: Combining Wrap-
ping and Rotation

4.2.1 Side Projection: 2D Wrapped Bar Chart Arrays

The concept of a visualisation that can wrap in two-dimensions is
best understood, initially, by extending our earlier charts. In Fig. 1c,
we further break down the hourly traffic accident data by day of the
week. Each bar still represents one hour, but there are now seven small
multiple visualisations, one for each day. Like the 24-hour day, the
seven-day week is also cyclical. It’s conventional to display the week
from Sunday to Saturday, with the weekdays centred and consecutive.
But what happens if an analyst particularly wants to compare Saturday
activity against Sunday? Here is where we can introduce a second
(vertical) dimension of interactive wrapping, such that vertical mouse or
touch drags cause the day order to wrap, while still allowing horizontal
drags to wrap the hours. Topologically, this can be seen as a side view of
the torus, where now the hour dimension spans the long circumference
of the torus, while the days progress around the circumference of a
torus segment (as per Fig. 1-lower-left).

4.2.2 Top Projection: Polar chart arrays that wrap and rotate

In Fig. 1d, we introduce a new type of visual inspired by a top-down
view of the torus. The result is a polar visualisation where, as before,
the disc can be rotated through a mouse or touch drag tangential to the
disc to change the hour that is centred at the top. In addition, a mouse
drag outward from, or towards, the centre of the disc changes the day
order.

Fig. 14. Examples of torus panning on an MDS using the Hepta data
set [39] with already known clustering information: (a) traditional (un-
wrapped) MDS plot on a 2D-plane; (b, c) two configurations wrapped
MDS plot laid-out on a 2D torus, using the algorithm presented by Chen
et al. [14].

4.3 Mapping and Extending other types of visualisations
to Cylinder or Torus Interaction Topologies

In the following, we discuss each of the two topologies and give further
examples. We show how each topology leads to interactive wrappable
visualisations and for which kinds of data wrappable visualisations
make most sense. To create wrappable visualisations, we implemented
a small web tool1 that can present arbitrary 2D visualisations with
one- or two-dimensional wrap panning and allows for the selection
of panning constraints in accord with the topology (cylinder or torus).
The user can upload separate images for the visualisation and optional
axes-labels that remain fixed at the sides while the visualisation is being
panned.

4.3.1 Cylinder Topology Examples

Cylinder wrapping can be applied to any visualisation that benefits
from panning continuously along one spatial dimension, just as we
were able to demonstrate for the bar charts in our study.

Apart from bar charts, cylindrical wrapping can be applied to other
types of visuals in a straightforward manner. Fig. 7a shows a set of
average yearly rainfall data shown as lines plotted across 12 months.
Similarly, parallel coordinates plots of multidimensional data, where
the dimensions have a sensible cyclical ordering, can be mapped to the
cylinder and be either side-projected (Fig. 7b), or top-projected in a
radial form (Fig. 7c).

However, the concept can equally be applied to other types of data.
For example, Fig. 8a shows a transportation map (two intersecting lines
from the Singapore Metro) with a cycle. We show that by redrawing the
map on a cylinder such that the loop is routed around the circumference,
and then by a side-projecting, we can unwrap the cycle (Fig. 8b). The
projected view can then be endlessly panned left or right (Fig. 8c).
Such a representation could be used on (e.g.) a circle line train to
continuously show the stations ahead in the order they will be visited.
Such narrower maps can be shown more space-efficiently on, e.g.,
narrow static or digital displays above doors inside trains.

In a similar (cyclical network) vein, Fig. 9 shows a Sankey diagram
depicting thermodynamic analysis of water injection in a micro gas
turbine [13]. Sankey diagrams have become popular in information vi-
sualisation for showing movements of data elements between different
groupings. For example, Google Analytics uses them to show click-
through behaviour of users of web pages. However, in such abstract
information visualisation they are rarely depicted with cycles, possibly
because they start to look messy, as in Fig. 9a2. In Fig. 9b, we redraw
the same Sankey diagram on a cylinder topology, and project from the
side to afford vertical panning.

4.3.2 Torus Topology Examples

As we have seen, in a torus topology, a 2D visualisation may be mapped
to a torus surface provided the top and bottom edges as well as the

1https://github.com/Kun-Ting/WrappingChart
2generated with a fork of the d3-Sankey software: http://bl.ocks.org/

soxofaan/bb6f91d57dc4b6afe91d

http://www.sthda.com/english/wiki/visualize-correlation-matrix-using-correlogram
http://www.sthda.com/english/wiki/visualize-correlation-matrix-using-correlogram
https://github.com/Kun-Ting/WrappingChart
http://bl.ocks.org/soxofaan/bb6f91d57dc4b6afe91d
http://bl.ocks.org/soxofaan/bb6f91d57dc4b6afe91d


left and right edges of the 2D visualisation meet up (Fig. 1). A side
projection of the torus then leads to visualisations that can be panned
in both dimensions at the same time. In user interface design, the
earliest example of such torus wrapping may be the classic Asteroids
game3. Torus topologies have also been explored for mouse pointers
on computer screens [25]. However, in information visualisation, torus
topologies have been used experimentally for network visualisation
[15], but otherwise have not previously been systematically explored.
Some algorithmic work has been applied to create self-organising maps
(SOMs) [26, 43] on a torus, but visualisation has always happened in a
static plane.

A top projection of a torus results in a polar visualisation, similar to
top-down views on cylinder topologies. The difference is that panning
can now happen in two ways: using rotation along one dimension and
using wrapping to move elements from the inside of the polar visualisa-
tion to its outside (Fig. 11). This kind of panning can also overcome
the common problem of polar visualisations that visual information at
its centre is rendered smaller than on its outer boundary.

4.3.3 Bespoke layouts:

While wrapping some 2D-visualisations, such as heatmaps, matrices, or
horizon graphs is straighforward, other visualisations can benefit from
optimising their layout or embedding. Such examples include node-link
representations for networks [14,15], multi-dimensional scaling (MDS),
or SOMs. For node-link diagrams, previous work investigated drawing
strictly crossing-free graphs over 2D torus topology with partial or
full context of the layout [29]. Chen et al. later introduced a layout
algorithm for network embeddings on a torus and showed how inter-
active toroidal wrappings improve understanding clusters in node-link
diagrams [14]. They used a freely pannable 2D-plane to explore the
layout (Fig. 13).

Using the same algorithm, Fig. 14 shows a multi-dimensional scaling
(MDS) calculated on a torus topology. Fig. 14(a) shows an unwrapped
original 2D MDS plot with 70 points and 7 classifications on a 2D-
plane, using a standard force-directed layout algorithm. Fig. 14b and
Fig. 14c show our torus layouts in two different panning configurations
(free vertical and horizontal panning, no panning constraints).

4.3.4 Constrained panning

While panning direction is constrained naturally in cylinder topolo-
gies to only one dimension (e.g. horizontally or vertically), on toroidal
topologies, users can freely pan along both spatial dimensions. Such
free panning allows for rapid navigation, however, in many visualisa-
tions, spatial dimensions have meaning and constraining interactions to
one dimension at a time facilitates exploration.

For example, Fig. 10 shows an horizon graph [24] for aggregated
time series data over days (vertically) and hours (horizontally). Panning
horizontally will cycle through the hours of the day (0-24h) and panning
vertically will cycle through the days of the week (Mon-Sun). Panning
in this example is restricted to one of these dimensions at a time to allow
for exploring values across either days or hours without accidentally
changing the context of the other dimension. For example, an analyst
might be interested in exploring the exact time of peaks across days,
and therefore requires the hour-dimension (horizontal) to remain fixed,
while panning vertically through the days.

Another example for a torus topology using the constraint panning
are adjacency matrices for network visualisation (Fig. 12). Some ma-
trix orderings are in fact cycles such as those based on the travelling
salesman problem [8]. These matrix orderings make the matrix a torus
since their start and end point have to be taken randomly from the
permutation and matrices can be panned along the two spatial dimen-
sions. Which of the elements becomes the first and last row is usually
determined using external heuristics such as the highest-degree node,
however, there is no given starting point. Choosing a random starting
point from a permutation can lead to arbitrary patterns in a matrix. For
example, the matrix in Fig. 12a seems to show two strong clusters,
one on the top-left and one on the bottom-right. The torus panning

3https://en.wikipedia.org/wiki/Asteroids_(video_game)

for matrices therefore can serve two purposes: (a) learning and com-
municating the idea of ordering rows and columns and (b) exploring a
specific ordering to avoid, e.g., overlooking cells at the margins of the
matrix or misinterpreting clusters cut in half by the ordering (Fig. 12a).

For undirected networks, matrices are symmetric to the diagonal
(usually top-left to bottom-right diagonal, if both rows and columns
run left-right and top-down respectively). To preserve this important
feature of symmetry and to keep viewers’ mental map of the matrix
preserved, we can constrain the panning so that user can pan only along
the diagonal, i.e., the diagonal is fixed while vertical and horizontal
panning happen at the same time.

Panning the matrix diagonally (Fig. 12b) reveals that the two clusters
visible in Fig. 12a are in fact one large cluster situated at the top-
left of the matrix. Panning further along the diagonal for just one
single row (Fig. 12c) highlights the mpg row/column by emphasising
its strong connections (correlations) with any of the other nodes in the
network. The same “pan-configuration” also highlights the red cells in
the mpg-row/column, which depict negative correlations. In contrast,
the configuration in Fig. 12b visually emphasises the strength of the
correlation, rather than their type. In summary, torus wrapping can
help exploration and scrutinising data as well as finding the views most
appropriate for a given task or message.

5 DISCUSSION AND FUTURE WORK

In our study, we exclusively focus on evaluating cyclic temporal data in
one spatial dimension to keep the crowdsourced study from becoming
overly complicated. Based on the study results, we might hypothesise
that, for more complicated case of 2D temporal data exploration in a 2D
torus topology, interactive wrapping with two spatial dimensions may
still outperform the rotational and wraparound polar chart. In future,
we intend to further investigate this hypothesis. Another direction is to
investigate if the performance benefits afforded by interactive wrapping
across the boundaries also applies to other non-temporal cyclic data
types, such as geographic maps or flow diagrams with cycles. We would
also like to further investigate the aspects of the wrapping method that
drive better performance. For example, we cannot say whether the
interactive panning we provided is better than a passive animation of
wrapping affording different views. Our feeling, however, is that the
interaction gives users a better understanding of the paradigm as well
as a sense of control.

Our design space exploration yielded a number of novel applica-
tions of toroidal wrapping, such as multidimensional scaling plots,
and matrices. We would like to study these further and investigate if
such interactive wrapped visualisations could be practically usable by
domain experts.

6 CONCLUSION

We have presented a study comparing the effect of interactive wrapping
of bar charts and rotation of polar charts on the readability of real-
world cyclical data. Our study is the first to demonstrate that a pannable
wrapped visualisation offers significant benefits in terms of error rate
over the equivalent static visualisation for reading ranges and comparing
values that are split across the edges of the chart. Specifically, our study
indicates that standard bar charts with interactive wrap panning offers
significant benefits over standard unwrapped bar charts in accuracy for
reading ranges or value comparison tasks and overall user preference.
However, interactive bar chart is significantly slower than standard bar
charts. For polar charts, interactive panning makes them significantly
slower and less accurate than static polar chart or bar chart, except for
tasks of reading monotonic ranges. In the latter, standard bar chart is
least accurate due to the need to mentally connect discontinued ranges
across two ends of the charts.

Our design space opens a new class of wrappable visualisations and
identifies data types that are wrappable. Cylindrical topologies are well
suited to data that is cyclical in one dimension. Toroidal topologies
are useful when the data has two cyclical dimensions and for relational
data that can be arranged onto such a topology.

https://en.wikipedia.org/wiki/Asteroids_(video_game)
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