Supporting the Problem-Solving Loop: Designing Highly Interactive
Optimisation Systems

Jie Liu, Tim Dwyer, Guido Tack, Samuel Gratzl, Kim Marriott

Abstract—Efficient optimisation algorithms have become important tools for finding high-quality solutions to hard, real-world problems
such as production scheduling, timetabling, or vehicle routing. These algorithms are typically “black boxes” that work on mathematical
models of the problem to solve. However, many problems are difficult to fully specify, and require a “human in the loop” who collaborates
with the algorithm by refining the model and guiding the search to produce acceptable solutions. Recently, the Problem-Solving Loop
was introduced as a high-level model of such interactive optimisation. Here, we present and evaluate nine recommendations for the
design of interactive visualisation tools supporting the Problem-Solving Loop. They range from the choice of visual representation for
solutions and constraints to the use of a solution gallery to support exploration of alternate solutions. We first examined the applicability
of the recommendations by investigating how well they had been supported in previous interactive optimisation tools. We then evaluated
the recommendations in the context of the vehicle routing problem with time windows (VRPTW). To do so we built a sophisticated
interactive visual system for solving VRPTW that was informed by the recommendations. Ten participants then used this system to
solve a variety of routing problems. We report on participant comments and interaction patterns with the tool. These showed the tool
was regarded as highly usable and the results generally supported the usefulness of the underlying recommendations.

Index Terms—Interactive optimisation, Interface design, Usability, Interactive systems and tools, Vehicle routing

+

1 INTRODUCTION

Automatic optimisation is increasingly used to find high-quality so-
lutions to hard, real-world resource allocation and scheduling prob-
lems, such as timetabling [55], logistics [6], scheduling of scientific
observations [54], or planning of medical procedures [9]. The problem
is first modelled mathematically and then a constrained optimisation
solver is used to find the best—or at least a very good—solution to the
problem [42].

The traditional view of the optimisation solver is that it is a “black
box” which does not support user interaction. However, the optimisa-
tion community has found that in practice many real-world problems
require the user to actively engage in the solution process. One of the
main reasons for such interactive optimisation is that a mathematical
model necessarily simplifies the real-world problem [2, 17]. Interaction
allows the user to bring their additional knowledge into the solution
process and means that the tool is less brittle and can more flexibly
adjust to unforeseen situations. In addition, interaction builds the user’s
trust and confidence in the solver [36].

The design of visual interfaces that support people to work effec-
tively with optimisation systems can be seen as an application of Visual
Analytics [35]. Here we present and provide an initial evaluation of
the first design recommendations for such interfaces. Our specific
contributions are fourfold.

1. Nine recommendations informed by the problem-solving loop [35].
This loop is a theoretical framework for understanding the high-level
user goals and tasks in interactive optimisation and is an analogue
of the sense-making loop widely used to understand visual ana-
lytics. The recommendations cover visualisation of solutions and
constraints, interaction with the solver, as well as comparison of
solutions and provenance of solutions.

2. A review of representative interactive optimisation tools to deter-
mine how well these recommendations are supported by current
tools. While some recommendations were well supported, most—
such as showing a gallery of solutions, side-by-side comparison of

e Jie Liu, Tim Dwyer, Samuel Gratzl, Kim Marriott and Guido Tack are with
Monash University. E-mail: jliul20@ gmail.com,
{tim.dwyer3|guido.tack|kim.marriott} @monash.edu, sam@sgratzl.com

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

solutions, showing solution provenance or feedback on the solution
process—were not.

3. The design and implementation of an interactive optimisation tool
that exemplifies all of the design recommendations. Our tool solves
representative real-world problem with diverse constraints: the vehi-
cle routing problem with time windows (VRPTW).

4. A qualitative user study with 10 participants evaluating the inter-
active tool for solving VRPTW. The study explored: the usability
of the tool; its flexibility in adjusting to new scenarios; the tool’s
support for our recommendations; and the usefulness of those rec-
ommendations as evidenced by the tool’s use.

This research informs the design of future optimisation tools. More

broadly it informs the design of other kinds of Al-based decision-

support tools, and visual analytics tools in general.

2 BACKGROUND

Interactive Optimisation: Optimisation uses computational
techniques—such as integer programming, simulated annealing or
constraint programming—to find the best (or at least a good) solution
to a mathematical model of a decision problem. The model specifies
decision variables for which the optimisation technique will find
values, an objective function to measure the quality of a solution, and
constraints that restrict the values that the decision variables can take.
Usually, we create a general model which is instantiated to a particular
problem by assigning values to the model’s parameters.

For example, in this paper we consider the Vehicle Routing Problem
with Time Windows (VRPTW). In this problem the model’s parameters
specify the number of vehicles available to visit customers, the time
windows in which each customer must be visited, and the distance
and travel time between customers and from each customer to the
depot. A solution to the problem assigns each customer to a vehicle,
and determines the order of customer visits for each vehicle. The
constraints are that customers can only be visited in their time windows,
each vehicle can only visit one customer at a time and must have time
to travel between consecutive customers. The objective is to minimise
the total distance travelled by all vehicles.

There is now a recognition by the optimisation community of the
need in many applications for optimisation systems that are interactive
rather than fully automatic “black boxes”, for which the user simply
provides values for the model’s parameters and then waits for the
system to compute a solution. A recent survey paper [38] clarifies the
rationale for involving the user. For many real-world problems it is
unrealistic to fully model the problem. Allowing the user to modify

constraints and adjust trade-offs in the objective function means that
they can reduce the gap between the model and the real-world problem.
It also provides flexibility as the user can modify the model to handle
unexpected situations. Other benefits of interaction are that it may allow
the user to guide the optimisation algorithm to find a better solution
and can help the user build an appropriate level of trust in the system.

Most research into interactive optimisation has focused on algo-
rithms or applications. For instance, the aforementioned survey [38]
almost totally ignores visualisation and interaction techniques, the user
experience or user evaluations. Two notable exceptions are an early
review by Jones [28] of visualisation usage in optimisation and a survey
by Miettinen [39] of visualisations used for multi-criteria optimisation.
Other research, e.g. Goodwin et al. [24], has investigated how to use
visualisation to diagnose and refine optimisation models. However,
this is to support the initial development of the model by an expert in
optimisation, not the subsequent use of the model by the end-user.

One area that has received some attention is whether interaction
engenders trust in optimisation systems. Liu et al. [35] found that
participants gained trust through the use of interactive optimisation
tools from a small qualitative study in brachytherapy. And in two
controlled studies Liu et al. [36] found that feedback about the solution
process led to over-trust, but allowing users to manipulate solutions led
to better-calibrated trust.

A number of user studies have evaluated the effectiveness of interac-
tive optimisation systems [4, 8, 10, 12,13, 15,17, 18,23,25,27,30, 32,
37,45,50,52,56]. In particular, Caldas and Santos [13] developed a
user-guided interactive system for daylighting design and found the pro-
posed system could produce good-quality solutions. Similarly, Matejka
et al. [37] presented Dream Lens, an interactive visual analysis tool to
explore and visualise generative design. Another user study evaluated
an interactive optimisation system developed by Coffey et al. [15] that
proposed a user-guided approach to allow users to directly navigate the
simulation model and change the design, while the system adjusted the
underlying parameters correspondingly. Dayama et al. [18] described
an interactive optimisation system for layout design in which the tool
suggested alternative layouts in an example gallery. Klau et al. [32] pro-
posed an interactive optimisation system based on the human-guided
simple search (HuGSS) framework to solve a particular kind of vehicle
routing problem and reported that better solutions could be found by
using the system.

However, to the best of our knowledge there has been no attempt
to develop or evaluate general recommendations for the design of
visualisation and interactions in interactive optimisation systems.
Visual Analytics: Another essential tool for decision support is visual
analytics. This uses automatic analysis empowered by visualisation
and interaction techniques to make sense of data [31]. There are great
similarities between visual analytics and interactive optimisation as
both research fields aim to employ both humans and computers to
solve complex real-world problems. Indeed, in a sense interactive
optimisation is a visual analytics task in which the user is trying to
understand the space of possible solutions to a decision problem [35].
Unlike interactive optimisation, usability and the creation of design
guidelines has been an ongoing focus of visual analytics research.

There exist several models or frameworks describing high-level
tasks and processes in visual analytics. Pirolli and Card [46] proposed
a sense-making loop which captured the processes and steps employed
by analysts when analysing and making sense of information. Keim et
al. [31] presented the visual analytics process as a knowledge discovery
framework describing typical interactions and tasks. Ceneda et al. [14]
introduced a model, extended from Van Wijk’s [59] generic visualisa-
tion model, to describe the opportunities of using automatic guidance
to support user analysis in visual analytics. This model was further
extended by Collins et al. [16] with a focus on improving the efficiency
of the analytical process utilising different automatic guidance. Dudley
etal. [21] gives a workflow for interactive machine learning (ML).
Guidelines: While currently there are no design guidelines for interac-
tive optimisation systems, guidelines exist for other kinds of interactive
applications. Endsley [22] gives general guidelines for the design of
autonomous and semi-autonomous systems. She highlights the im-

Extract & Setup Evaluate /
Simplify F F Comp:

General
Optimisa-
tion Model

Decide Review

List of
Ranked
Solutions

Final
Decision

Recom-
mendation

Problem
Instance

Problem
Domain

Candidate
Solutions

Critical
Feedback

Understand Refine
Problem

Model-defining Loop

Reevaluate

Guide

Optimisation Loop
Problem-solving Loop

Fig. 1. The problem-solving loop. Image from [35].

portance of user involvement and control, recommending that tools
support and assist decision making but do not make the final decision.
Research into interactive ML highlights the need for meaningful expla-
nations of system behaviour [34], the need to engage the user, provide
effective data representations, and to exploit interactivity and provide
rich interactions [21]. General design recommendations for Al systems
emphasize the need for transparency in what the system can do and why
it has made a particular decision or performed a particular action [1].
Nodalo et al. [43] also emphasizes transparency and the need to use
simple, understandable visualisations. Miihlbacher et al. [40] presents
different models of interactive visualisation with analytic software and
strategies for increasing user involvement.

Problem Solving Loop: If we are to develop design recommendations
for interactive optimisation tools it is crucial to understand the fun-
damental tasks and processes in interactive optimisation. Hillier [26]
summarised the general steps in designing an automatic optimisation
system, which they named the ‘design process’. Shim [53] presented
and explained the general decision-making process of decision sup-
port systems. However, both Hillier and Shim only considered fully
automatic optimisation rather than interactive optimisation.

Recently, Liu et al. [35] proposed a theoretical framework called
the problem-solving loop, see Fig. 1, articulating the user goals and
tasks in interactive optimisation. It was based on feedback from health
professionals on an interactive optimisation application in treatment
planning for prostate cancer. The problem-solving loop has two main
loops: the model-defining loop and the optimisation loop. The model-
defining loop captures the process of creating an abstract mathematical
model of the general problem, while the optimisation loop captures
the interactive use of the model to solve a particular instance of the
problem. However, Liu et al. [35] did not evaluate this framework or use
it as the basis for developing design recommendations for interactive
optimisation systems. This is the focus of this paper. We now examine
the loop more closely.

Model Defining Loop: There are four tasks in the model-defining loop.
The two leftmost tasks Understand Problem and Extract & Simplify
capture the initial creation of the generic model by the (usually) expert
optimisation modeller. These tasks do not need to be supported by
an interactive optimisation tool as the assumption is that they were
completed when the tool was first created. The other two tasks, however,
should be supported in an interactive user interface. They are:
* Setup Parameters: Determining the parameter values for the instance
of the problem to be solved;
* Refine: Adding/removing/changing constraints and/or objectives in
the optimisation model.
Optimisation Loop: The optimisation loop has eight tasks. The right-
most four tasks do not need to be directly supported by the interactive
optimisation tool as they are concerned with deciding on the best solu-

tion out of a ranked list of solutions and then the review of the solution
by other stakeholders. The remaining four tasks, however, should be
supported by the tool:

* (Re)solve: Using the constraint solver to solve the generic model
with problem-specific parameters to generate a pool of candidate
solutions;

Evaluate/Compare: Showing a specific single solution and its associ-

ated constraint(s) and objective(s) to support the solution evaluation

process; Or comparing multiple candidate solutions to give a ranked

list of these solutions to better understand their trade-offs;

* Improve: Manipulating a solution to improve it;

* Guide: Guiding the optimisation solver by locking the satisfactory
parts of a solution and leaving the remaining parts for the optimisa-
tion solver to change freely.

3 DESIGN RECOMMENDATIONS FOR INTERACTIVE OPTIMISA-
TION

Based on this analysis of the problem-solving loop we therefore rec-
ommend that an interactive optimisation tool should support the above
six tasks. This accords with Endsley’s guidelines for autonomous sys-
tems [22] as the task breakdown ensures that the user is in control of the
solver’s actions and remains responsible for choosing the final solution.
It relies on a client-driven integration model in which the user via the
visual interface controls the solver operation [40]. We now give more
detailed design recommendations informed by our literature review.

Recommendation 1: Provide appropriate visual representations of
solutions & constraints. Representations of solutions and constraints
should, where possible, make use of visualisations currently used by
domain experts so that they can understand and make sense of them.
Importantly, the visual representations of solutions and constraints
should be tightly coupled. Specifically, when presenting a solution
the constraints also need to be represented in order to help users make
sense of the solution and to better understand the solution space imme-
diately around it. It may look obvious to represent both solutions and
constraints, but on occasion this has been overlooked by optimisation
researchers [20].

This recommendation accords with showing contextually relevant
information [1], providing effective data representations [21] and use
of understandable visualisations [43]. This recommendation is central
to supporting interactive optimisation. Without appropriate visual rep-
resentations of solutions, Evaluating/Comparing solutions and Guiding
the solver will be very difficult. Without appropriate visual representa-
tions of constraints, Improving a solution and Refining an optimisation
model is difficult to achieve.

Recommendation 2: Support user modification of the optimisation
model. The interactive tool should allow users to modify existing
constraints, parameters and objective function. Furthermore they should
be able to specify new constraints and add them to the optimisation
model.

This recommendation supports the Setup Parameters and Refine
steps in the model-defining loop. It provides a semantically rich way of
interacting with the solver [21]. Importantly, being able to refine the
optimisation model can produce more realistic and satisfying solutions
by reducing the gap between the optimisation model and the real-world
problem. It also supports dynamic optimisation if the optimisation
problem changes.

However, the ability to add constraints is limited by the solver’s
capabilities. For instance, the user cannot add non-linear constraints
to a linear solver. Furthermore, it can be difficult for non-experts in
optimisation to understand abstract constraints. Thus the kinds of
constraints that can be added need to be understandable by a domain
expert and appropriately represented (Recommendation 1). Constraint
acquisition might be a useful approach to elicit constraints from the
user [3,7,19].

Recommendation 3: Allow direct manipulation of solutions. Users
should be able to directly manipulate a solution and make whatever
changes they like to the values assigned to the decision variables and
immediately see the impact on the objective function.

This recommendation allows users to Improve an existing solution.
Direct manipulation and immediate feedback encourages user engage-
ment [21, 22] and supports efficient correction [1]. Being able to
manipulate and change a solution allows users to Evaluate its quality
in their own way. With the support of appropriate representations of
solutions and constraints, the user can explore the trade-offs between
solutions, which is helpful for solution evaluation as well as perhaps
finding a more satisfying solution. Prior research has found that direct
manipulation allows the user to build an appropriate level of trust in the
constraint solver [36].

Recommendation 4: Provide a gallery of solutions. Multiple solu-
tions should be collected in a gallery. This should provide an interface
to explore the solutions and allow users to manually and automatically
(re)order solutions based on, say, the value of the objective function.

The solution gallery supports Comparison of multiple solutions,
allowing users to create a list of ranked solutions based on their prefer-
ences. The solution gallery is designed to encourage the user to develop
and evaluate alternative solutions. This is particularly important in
multi-criteria applications such as design where the objectives are con-
flicting and the trade-offs are unclear and impossible to encode in a
single objective function [18,57].

Recommendation 5: Allow user controlled re-optimisation. We be-
lieve it is necessary to provide users with the ability to re-solve part of
a solution. Often, users are satisfied with only some parts of a solution.
In that case, the system can support users by allowing them to “lock™
the values of variables in the good part of the solution, and improve the
remaining parts of the solution using the re-optimisation. Re-solving
provides a semantically rich way of interacting with the solver [21]
by allowing the users to Guide the optimisation solver to explore the
search space that they are interested in. Optimisation solvers should
make minimal changes to the parts of a solution that are locked and
apply any modifications to the unlocked parts without breaking any
constraints. This has the benefit of narrowing the search space to the
“unlocked” parts of the solution, so that optimisation solvers can find
a better solution more quickly. It also provides stability in the solv-
ing process, which helps to preserve the user’s mental model [47,48]
and accords with the guideline for Al systems to update and adapt
cautiously [1].

Recommendation 6: Support comparison of solutions. To support
better Comparison of solutions the interface should allow two (or more)
solutions to be viewed side-by-side. This allows the user to identify
the similarities and differences between the solutions. Visual cues may
be used to highlight these. Side-by-side comparisons allows users to
Evaluate/Compare solutions in a more meaningful way. Solutions with
equally-good values of the objective function may differ significantly.
Seeing and comparing the trade-offs between these solutions is required
in order to find the best solution.

Recommendation 7: Generate diverse solutions. We believe an abil-
ity to automatically generate a new solution that is significantly different
to any of the solutions in the gallery, but which is still of high quality
with respect to the objective function, will support the user finding bet-
ter solutions [18,33]. It supports (Re)Solving the optimisation problem
to generate a pool of diverse candidate solutions and can help users
better understand the problem by seeing possible trade-offs between
different criteria. It helps the user to avoid “decision biasing” [22].
The last two recommendations are not directly motivated by the
problem-solving loop but rather are general interface recommendations.

Recommendation 8: Provide feedback on the solving process. Of-
ten, optimisation software gives little feedback about the solving pro-
cess, or displays feedback at a very detailed, technical level. This can
be disquieting as finding a solution can take minutes, even hours or
days. If possible provide the user with understandable feedback on
what the solver is doing and how long they will have to wait. Doing so
will increase trust in the optimisation software [36]. Even something as
simple as a progress bar can show users that the optimisation software
is still properly functioning.

Feedback on the solving process might include providing an expla-
nation of the result. Explainability of algorithms means to justify the

Recommendations [32][45]56][10][[30](17] [4] [52](27]| (8] [(12][25]|[13} 50][15]]
1a.Provide appropriate visual representations of solutions.
1b. Provide appropriate visual representations of constraints.

2a. Support user modification of the optimisation constraints..
2b. Support user modification of the optimisation objectives.
3. Allow direct manipulation of solutions.

4. Provide a gallery of solutions.
5. Allow user controlled re-optimisation.

6. Support comparison of solutions.

7. Generate diverse solutions.
8. Provide feedback on the solving process.
9. Record solution provenance.

Fig. 2. Reflections of the proposed design recommendations in repre-
sentative systems from a variety of application domains. cells
represent full reflection. Partially cells represent partial reflec-
tion/exception. White cells indicate no reflection.

decisions made by an algorithm in a form that is understandable by hu-
mans, or other algorithms. Many researchers are exploring explainable
ML, e.g. [34] as a way increasing transparency and user trust. Explain-
able optimisation is also a well established area [29,44]. However, in
practice at present only some algorithms support it and the explanations
can be difficult for non-expert users to understand.

Recommendation 9: Record solution provenance. As discussed in
Recommendation 3 and 7, it is important to allow users to directly
manipulate solutions and generate new solutions. During this process it
is likely that the users will wish to return to previous solutions. This
can be facilitated by storing the history of solution manipulations, and
presenting the provenance of each solution in terms of the steps that
led to it. This encourages user interaction [22] as there is no need to
be afraid of making a mistake—they can always go back to a previous
solution and start over again. In general, support for provenance is im-
portant in visual analytic tools [49]. Another component of provenance
is the ability to annotate solutions. This can act as a memory aid for the
person using the system and also as a way of communicating different
aspects of the solution to stakeholders [35].

3.1 Reflections of Design Recommendations in Existing
Systems

In order to examine the usefulness of the nine recommendations pro-
posed above, we will now examine (retrospectively) whether the rec-
ommendations are met by 15 representative systems from the litera-
ture [4,8,10,12,13,15,17,25,27,30,32,45,50,52,56]. The examination
is not exhaustive as there many interactive optimisation systems. We
chose 15 recent systems (selected from 2007 onward) to keep the re-
flection update-to-date and from different application domains to make
the reflection as general as possible. The findings are summarised in
Fig. 2.

Recommendation 1 is very well supported and is the most commonly
supported recommendation. All of the examined systems have some
kind of visual representation of solutions. This is expected because a
suitable visual representation of a solution is fundamental to making
the results of the system understandable by the end-user.

Most of these visual representations are domain-specific. For exam-
ple, in the survey paper of the Human-Guided Search project, Klau et
al. [32] listed several interactive optimisation applications. A node-link
diagram was used in a graph layout problem. A simplified map con-
taining geographic locations of customers was used in a variation of
Travelling Salesman Problem (TSP). Similarly, Belin et al. [8] repre-
sented a city as a grid, in which different cells represented different
elements such as roads and rivers. However, there were two exceptions.
Unlike Belin’s approach, Cajot et al. [12] utilised parallel coordinates in
an urban planning problem to facilitate stakeholders’ decision making.
In machine learning, Kapoor et al. [30] used an adjacency matrix to
represent the classification result. Both of these representations are
unlikely to be understood by the average end-user.

The majority of the examined systems also have representations of
constraints. For instance, Cummings et al. [17] represented impassable
terrain such as big rocks as an area coloured in black in a path planning
problem. Bailly et al. [4] drew a lock icon to enforce item placements
without changes in a problem of application menu design. However, not

all systems visually represented constraints. In the system developed
by Brochu et al. [10], user-defined constraints about model parameters
for animation design were shown as a form using raw values.

Recommendations 2, 3, 5 and 7 are supported by roughly half of the
examined systems. Specifically, for Recommendation 2, some of these
systems support constraint modification. For example, Klau et al. [32]
allowed users to modify the priority constraint associated with each
customer in a VRP, which consequently affected re-optimisation. Some
systems utilise users’ preference feedback to influence optimisation
models and to guide optimisation solvers in producing more satisfactory
solutions. This appeared very common in multi-objective optimisation
systems and other systems using genetic algorithms (GA).

For Recommendation 3, more than half of the examined systems
allowed users to make changes to solutions. For instance, Patten et
al. [45] allowed users to directly move physical objects on a table-top
interface to re-locate telephone towers when solving a telephone tower
layout problem.

For Recommendation 5, many examined systems provided re-
optimisation. Belin et al. [8] proposed an interactive urban city design
tool which the optimisation solver simultaneously improves a city de-
sign while users are modifying the design. Most other tools however
do not support such simultaneous collaboration and require the users
and solvers to take turns to work on the problem [45].

For Recommendation 7, half of the examined systems offered differ-
ent solutions for the users to choose from. Thicke et al. [S6] evaluated a
medical treatment system which allows clinical professionals to explore
multiple equally good treatment plans. It becomes more important to
generate and present different solutions to users to facilitate the trade-
off comparisons between solutions, especially when there exist multiple
conflicting objectives in an optimisation problem. This led to better
support of this recommendation in multi-criteria objective problems.

Recommendations 4, 6, 8 and 9 were poorly supported and only
reflected in only a few of the examined systems. This is perhaps because
these recommendations support higher-level analysis and comparison of
solutions rather than the more obvious interactions required to construct
a solution. Specifically, for Recommendation 4, only Cummings et
al. [17] included a very basic solution gallery to facilitate comparison
of different path plans. For Recommendation 6, Brochu et al. [10]
provided four viewports with one solution each in a machine-learning-
based optimisation system for animation design. For Recommendation
8, Coffey et al. [15] simultaneously updated the model design when
users were interacting and modifying the current design. Lastly, for
Recommendation 9, Klau et al. [32] mentioned that users were allowed
to backtrack to previous solutions in the Human-Guided Search project,
which provides a partial solution history.!

This suggests that while some of the recommendations are typically
supported by interactive optimisation systems many are not. The ob-
vious question is therefore whether the proposed recommendations
actually lead to more usable interactive optimisation tools.

4 INTERACTIVE OPTIMISATION SYSTEM FOR VRPTW

In a second evaluation of the recommendations we used them to guide
the development of an exemplar interactive optimisation tool and then
conducted a user-study to evaluate the tool and the usefulness of the
embodied recommendations.

As our exemplar we chose to develop a tool for solving the Vehicle
Routing Problem with Time Windows (VRPTW), a variation of the Ve-
hicle Routing Problem (VRP). This is a practically important problem
that is challenging to solve, but understandable by the general public.
The VRP problem is to schedule several trucks to pick up goods from
the home depot and deliver them to the customers who have ordered
the goods. This problem aims to minimise the total cost of all truck
routes. We take total distance travelled by all trucks (the sum of all
truck route lengths) as the cost. VRPTW extends VRP by requiring
that a truck has to visit a customer to deliver a service within a certain
time window. To make the problem even more challenging, we allowed

't is possible that other systems also provided some kind of undo but that
this was not mentioned in the system description.

Solution 1 (48.51km) + M X

Electrician 1(16.93 km) Slsciour Fores

L

omo <>

L

Electrician 2 (16.76 km) e

L

[—
6 —mM _
E— —
z

L X

Electrician 3 (14.82 km)

f

Capital Golr
club

X
B——m —| Moorabh
H i

f
0800 08730 09°00 09:30 10:00 10:30 11:00

Solution History

Solution Gallery

Solution 2 (52.94km) + M

Solution 1

it i * ' Electrician1 (162 km) Rename

(4851 km)

n Load
X _— B _
| —— ————— Y F
B E— & A
s z -
L z ®)
3 e Electrician 2 (17.16 km) H
Y F 2 _
X “ %
Wheel A
i c
G .
- N Solution 2 o L,P X
> ! A (52.94 km)
x . d
Electrician 3 (19.58 km) " F
G
S ﬁ o
v 0 D
E —
D H
L F— N 1
penSireetMap contributors, CC-BY-5A, Imagery W, 8

08700 0830 09:00 0930 10:00 10:30 11:00 X

Solution 1 Solution 2

Fig. 3. An overview of the interactive optimisation tool showing its three main components: Solution window, Solution history and Solution gallery

(highlighted in). Sub-components are highlighted in
a different service period for each customer, which is the amount of
time the vehicle requires at the customer site to deliver the service (e.g.,
unloading the goods).

4.1

We implemented our test system as a web application, with the back-end
optimisation based on the MiniZinc [41] system and the Gecode [51]
constraint programming solver.

We spent considerable time refining and adjusting the web front-end
to conform to the proposed recommendations. The tool contains three
main components (see Fig. 3), as follows.

A) Solution window: In this window solutions may be explored in
detail and interactively modified. We designed the solution window
to present either a single solution or two solutions shown side-by-
side as recommended by Recommendation 6: Support comparison of
solutions. This supports participants in comparing different solutions,
but it also allows participants to compare a single solution before and
after re-optimisation to see what has been changed. Each solution in
the solution window is shown in its own solution viewport, see Fig. 3.
Each solution viewport comprises two panels.?

The street map panel (Fig. 4-right) displays the geographic informa-
tion about the trucks’ home depot, customers (labelled A-Z) and truck
routes—each truck’s route represented in a different colour.

We first considered a node-link diagram to display a solution with
nodes representing customers (at their geographic locations) and a
straight-line link representing the truck route travelled between cus-
tomers. While these diagrams were easy to draw, and reflect the un-
derlying mathematical model used by the constraint solver, we felt
that they violated Recommendation 1: Provide appropriate visual rep-
resentation of solutions. In reality, while a node-link diagram may
represent the accurate distance or time between nodes, the route a truck
travels from one location to another can be complex, with many turns
at intersections and roundabouts.

System Design

2The representation of solutions is similar to that used in [36]. However, the
system used in [36] was a minimal implementation designed only to evaluate
the effect of solver feedback and solution manipulation on trust and so provided
limited support for interaction and no support for most recommendations.

. Interactions are highlighted in red (the rest of interactions in Fig. 4).

We found a better representation using OpenStreetMap (OSM)? for

map display and Open Source Routing Machine (OSRM)* for realistic
routing in road networks, together with Leaflet’, a JavaScript map
annotation library, to create the street map representation for our tool.
Now, the street map view provides an unambiguous visual context of a
VRPTW and the routes are represented both realistically and accurately,
being faithful to the underlying mathematical model.
The schedule panel (Fig. 4-left) shows the time window of each cus-
tomer and the order of service delivery of each truck. Marey dia-
grams [58] are used in transport schedules to represent locations of
vehicles and the transport routes, which fits well in the VRPTW context.
In Marey diagrams time is showed vertically and locations are displayed
horizontally. However, to better suit the aspect ratio of the panel we
chose to swap these. This also has the advantage of making customer
names more visually salient than the time of delivery, reflecting their
relative importance.

Thus a schedule has each customer represented by a horizontal line
and the horizontal extent of the lines indicates the total time required
for the schedule. Customer lines are grouped by the truck which
services them. A sequence of line segments in the colour of the truck
as used on the map, passes through the customer lines, indicating the
truck’s progress in making deliveries to customers. Time windows for
each customer are represented by a grey rectangle with the position of
the left side of this rectangle indicating the start of the window, and
the right side indicating the end of the window. The other essential
constraint is the service period, i.e. the time required by a truck to
deliver a service. We used another rectangle in the colour of the truck
to represent a service period. The rectangular representations of the
time window and the service period were chosen for two reasons:
First, axis alignment facilitates quantitative comparisons of a service
period and a time window of a single customer and comparisons of
time windows of multiple customers. Second, it visually distinguishes
valid from invalid situations. In a valid situation, a service period
stays within the range of a time window resulting in the service period

Shttps://www.openstreetmap.org
4https ://project-osrm.org
5https ://www.leafletjs.com

https://www.openstreetmap.org
https://project-osrm.org
https://www.leafletjs.com

Solution 2 (41.71 km) ? [R}—Bookmark X

Electrician 1 (12.52 km)
Re-optimise 8 il

e .

s \ 7

T
Service period Time window
Electrician 2 (18.92 km) c

f,
Order —— 3 .
— - g i~

F
[—— -] § ® ¢
-

omo <>

f z

Electrician 3 (10.26 km)

Lock%

B -
z ‘ g
" Map data © OpenStroethag contrioutor

08:00 08:30 09:00 09:30 10:00 10:30 11:00

{Modify

Fig. 4. A detailed view of the solution viewport in the solution window
including the street map and the schedule. Interactions are highlighted
in red. Constraints are marked in purple.

rectangle completely overlapped on top of the time window rectangle.
Whereas in an invalid situation, a service period goes beyond the close
of a time window resulting in a possible partial overlapping between
the service period rectangle and the time window rectangle. Thus
this representation conforms to the second part of Recommendation 1:
Provide appropriate visual representation of constraints.

B) Solution history: keeps tracks of the participant’s interaction his-
tory. We designed a histogram to record all solutions and their prove-
nances according to the Recommendation 9: Record solution prove-
nance.

Objective histogram represents each solution as a rectangular bar
whose height indicates the value of the solution’s objective function
(total distance travelled). Whenever constraints of a solution change or
the solution is re-optimised, we draw a new bar for the new solution.
We draw an arc between two solutions if the solution on the right is
derived from that on the left. Selecting a history bar brings the details
of the corresponding solution into the solution window.

C) Solution gallery: supports participants managing solutions so as to
finally select the best solution out of many, following Recommendation
4: Provide a gallery of solutions. The gallery supports annotations al-
lowing participants to edit solution names (Recommendation 9: Record
solution provenance).

Mini-solution provides a simplified view of a solution by showing
vehicle routes without the street map and including the objective value
and the solution name.

The tool initialises the solution history and gallery with several
different solutions to give users flexibility to choose between different
starting solutions. The solutions are chosen to be diverse. We measured
diversity between solutions using a diversity matrix, which calculated
the routing sequence differences between one solution and all the
others. We select solutions with maximum diversity between the new
computed solution and any previously computed solutions. Providing
such a selection of starting points meets Recommendation 7: Generate
diverse solutions.

4.2 System Interaction

Interactions fall into two groups: optimisation-model interaction and
problem-solving interaction. There are two optimisation-model inter-
actions:

Lock allows the user to fix a specific customer to a specific truck. A
lock is drawn beside the customer to represent this constraint. This
allows us to specify, for instance, that a customer requires the use of a
particular truck. Locking a customer to a truck does not constrain the
time of service by the truck.

Order fixes the relative order in which two customers of the same truck
are to be serviced. A directed arc line is drawn from one customer

to another to represent this constraint. It is useful in pick-up and
delivery problems, where the goods to be delivered to a customer may
be located at another customer’s location. Thus, the goods from the
second customer need to be picked up first and then delivered to the
first customer.

These constraints, supported by appropriate visual representations
(Recommendation 1: Provide appropriate visual representation of con-
straints), give users the flexibility to modify the optimisation models,
Recommendation 2: Support user modification of the optimisation
model.

There are five problem-solving interactions. These allow the user

to create new solutions. Modify allows users to re-assign customers
within the same truck or between two trucks via drag-and-drop. This
conforms to Recommendation 3: Allow direct manipulation of solu-
tions.
Re-optimise allows the user to collaboratively solve an optimisation
problem with the optimisation solver with the control of when and what
to re-optimise. This is a reflection of the Recommendation 5: Allow
user controlled re-optimisation. In particular, users can freeze a part or
multiple parts of a solution using the optimisation-model interactions
described above, and then re-optimise the solution by clicking the re-
optimise button located at the very top of the solution viewport within
the solution window.

Before the optimisation solver spits out a new solution, the re-
optimise button is replaced by a spinning wheel to indicate the ongoing
re-optimisation process. This is in accord with Recommendation 8:
Provide feedback on the solving process.

Load allows users to choose a solution from either the solution history
or the solution gallery and to display the solution on either the left or
the right solution viewport in the solution window by clicking the load
button when hovering over the target solution.

Bookmark enables users to mark and store a solution in the solution
gallery by clicking the bookmark button when hovering over a solution
in either the solution window (either viewport) or the solution history.
Rename allows users to change the name of a solution. The solution
name can become a useful annotation allowing for organising and
finding candidate solutions.

5 USER STUuDY

Our user study of the interactive optimisation tool was designed to
evaluate: (1) Usability of the tool; (2) The tool’s ability to support
unforeseen scenarios (flexibility); (3) The tool’s support for the recom-
mendations and usefulness of these recommendations as evidenced by
its use.

5.1 Study Design

Participants: We recruited 10 participants: 7 females and 3 males.
They were PhD students from our university and employees from other
organisations with a bachelor’s degree or higher. As end-users of
interactive optimisation tool are more likely to be non-experts rather
than optimisation experts, we only selected participants who did not
have computer science or optimisation expertise. All participants had
a normal or corrected-to-normal vision and were without any colour
vision impairment.
Procedure: Participants used our interactive optimisation tool through-
out the study. The application domain presented to participants was
that of a company that sends electricians (in trucks) to customers. Each
customer requires a certain fixed amount of time for the service, and
this has a time window. All trucks start from a central depot and return
to the depot after servicing their customers.

The study took roughly one hour and ten minutes on average. The
study was run on a MacBook Pro notebook with a 2.6 GHz Intel i5
processor and a 13-inch screen. It had three parts:

(a) Training: This provided an introduction to the application domain,
the solution and constraint representation, interface components (so-
lution window, solution history and solution gallery) as well as user
interactions (Modify a solution by re-assigning customers; Add & re-
move a customer lock constraint; Add & remove a customer order
constraint; Re-optimise a solution when constraints have been modified;

R1. Provide appropriate visual representations of solutions & constraints.
Q1-1. | found the visual representation of a solution to the routing problem to
be intuitive (the route on the map and the electrician schedule).

Q1-2 | found the visual representation of the constraints to be intuitive (the
locks and the arrows).

Q1-3* Could these be improved? How?

R2. Support user modification of the optimisation model.

Q2-1 | found the system provided enough flexibility to model customer and
operation requirements by adding new constraints (locks and arrows).

Q2-2* Are there other constraints you would like the system to support?

R3. Allow direct manipulation of solutions.

Q3-1 When moving customers around within a single electrician’s schedule
or between electricians | found it useful to see immediately how this affects
the solution (distance travelled, feasibility).

R4. Provide a gallery of solutions.
Q4-1 | found the solution gallery useful.
Q4-2* Could this be improved? How?

R5. Allow user controlled re-optimisation.
Q5-1 | found it useful to re-optimise after changing constraints.

R6. Support comparison of solutions.

Q6-1 | found it useful to see two solutions side-by-side.
Q6-2* Could this be improved? How?

R7. Generate diverse solutions.

Q7-1 | found it useful to start with a number of different solutions in the
solution gallery.

R8. Provide feedback on the solving process.

Q8-1 | found the spinning wheel provided sufficient feedback while the
system is producing a new solution.

Q8-2* Would you like more feedback?

R9. Record solution provenance.

Q9-1 | found it useful to go back to previous solutions.

Q9-2 | could understand the history of the solutions.

Q9-3* Could these be improved? How?

Fig. 5. (Q)uestions about interface features and their usefulness based
on each (R)ecommendation. Questions marked with * are open-ended
questions.

Load a solution to the solution window; Bookmark a solution to the
solution gallery; Rename a solution in the solution gallery.)

(b) Problem-solving: Participants were then asked to solve an optimi-
sation problem in four different scenarios. The first scenario was the
tool’s intended use-case while the other three were designed to evaluate
its flexibility in situations it wasn’t explicitly designed to handle. At the
end of each scenario, participants were asked to explain their strategies
for solving the problem.

In Scenario 1 participants were asked to find a solution minimising
the total travelling distance with no constraints apart from satisfying
customer time-windows. This was the tool’s intended use-case. In Part
1 of this scenario, participants could manually improve the solutions
but re-optimisation was not allowed, then in Part 2 they were allowed
to use re-optimisation. This was to ensure that they experimented with
both manual manipulation and re-optimisation. Participants were given
a maximum of 5 minutes for each part of the scenario.

Scenario 2 asked participants to solve a question of similar difficulty
to Scenario 1. However, we introduced another objective, asking par-
ticipant’s to minimise travel distance but also balance the workload of
each truck so that they service close to the same number of customers.
There was a 5-minute time limit for this Scenario.

Scenario 3 asked participants to find a solution satisfying a list of
customer requests. The two objectives remained the same as in Scenario
2. Most of the requests could be satisfied by adding either a customer
lock constraint or a customer order constraint. For instance, one request
was “Customer X requires the service from Electrician 2. However,
there was a more difficult request specifying that one customer should
not be serviced by a particular truck. This was difficult because none
of the two customer-related constraints can directly encode it. Because
of the difficulty, participants had 10 minutes for this scenario.

In Scenario 4, participants were asked to revise the schedule as the
result of an emergency in which one of the trucks has broken down.
The two objectives remained the same as in Scenario 2. This was
challenging because not only did participants need to re-assign the
remaining customers of the broken truck but also participants had to
ensure that all services delivered before the truck break-down time
were unchanged, as these events were now in the past. There were no
constraints that could directly achieve this, which made this problem
very difficult. For this reason, we gave participants 15 minutes.

(c) System evaluation: After completing the scenarios participants
were asked to evaluate the system interface and usability. Participants
were first asked to rank different aspects of the interface using a Likert
scale from 1 to 5. The questions were designed to evaluate the use-
fulness of these features and hence the usefulness of the underlying
recommendations. We decided not to ask participants to evaluate the
recommendations directly because the recommendations were rather
abstract and difficult for non-experts to understand. The questions
can be found in Fig. 5. We used the standard System Usability Scale
(SUS) [11], a 10-item questionnaire to measure the usability of our
interface. Again participants were asked to rank each item using the
same S-point Likert scale. We did not modify the questions in the
SUS questionnaire. However, we did provide extra context for the first
and the last questions in order to clarify what was being asked. For
example, the first question was ‘I think that I would like to use this
system frequently.” We provided the extra context ‘Assume that you
need to solve similar vehicle routing problems as a part of your job.

We prepared four problem instances of the VRPTW with similar
complexity for the four scenarios (3 trucks, 12 customers). For the
first three scenarios, we pre-computed 3 diverse solutions that were
stored in both the solution history and the solution gallery. The last
scenario, started with a single solution. In terms of the solution quality,
the first two problem instances contained poor solutions which were
30% worse than the best solution. The last two problems contained best
or close-to-best (with 5% solution quality margin) solutions. We did
this because we thought this would encourage participants to explore
different solutions in the first two scenarios as finding an improved
solution was relatively easy.

5.2 Results & Discussion

Recall we wished to evaluate: (1) Usability of the tool; (2) Its flexibility
to support unforeseen scenarios; (3) Support for the recommendations
and their usefulness.

Usability: At the end of the -—

study participants were asked | D D D
to evaluate the usability of the

tool using the SUS (see Fig. 6).
We used the standard approach |:|
to calculate the overall system 1- B
usability score: convert the rat- hR:]
ings to values from O to 4 (4 be-
ing the most positive response),
subtract the converted rating of
each even-numbered questions
from 4 because these questions were in a negative tone, sum these con-
verted ratings of all odd- and even-numbered questions, then multiply
the summed rating by 2.5 to give a score out of 100.

The highest score was 97.5, and the lowest score was 77.5. Except
for the lowest score, all other scores were equal to or greater to 87.5.
On average, the SUS score of our tool was 91, which is far better than
the acceptance threshold value of 70 [5]. Generally, a score above
80 means that the tool is of excellent usability, and is acceptable to
end-users. Thus we can be reasonably confident that usability issues
did not impact the use of different features.

Flexibility: The different scenarios were designed to explore the tool’s
flexibility. All participants finished both parts of Scenario 1. 8 out of
10 participants developed a better solution in Part 1. However, none
of them found an optimal solution, i.e. with the minimum total travel
distance. In general, participants tried to group close-by customers and
service them with the same truck to reduce the total travelling distance.

Now B O

Usability

Question

Fig. 6. Participants’ ratings of SUS
questionnaire.

In Part 2, an optimal solution was discovered by all participants using
re-optimisation.

Most participants found very good solutions to Scenario 2. These
solutions were better than the starting solutions in two aspects: not only
was the total distances shorter than any of the pre-computed diverse
solutions, but also participants’ developed solutions that were perfectly
balanced with 4 customers per truck. Having the second objective to
also balance trucks’ workloads affected participants’ problem-solving
strategies.

Specifically, 7 participants explained that they balanced the workload
first by re-assigning customers, and then minimised the total travelling
distance using re-optimisation. In contrast, the other 3 participants
tried to minimise the distance first using re-optimisation, and then to
manually re-assign customers for workload balancing. One participant
had an interesting strategy. (S)he primarily focused on re-assigning
customers with long time windows because these customers were easier
to fit in the schedule compared to short time-window customers. Thus,
such customer re-assignments were more tolerant of time window
violations and it was easier to fix the solution when violations occurred.

Scenario 3 introduced customer requests. All participants managed
to find high quality solutions satisfying the requests and balancing
the two objectives. All participants added constraints to enforce the
majority of the customer requests and then tried to balance the two
objectives using the same approaches as in Scenario 2. Most used lock
to ensure that the customer who did not like a particular electrician
remained assigned to one of the other electricians.

Scenario 4 asked participants modify the schedule after a truck
breakdown. 9 out of 10 participants developed a valid solution. All
participants agreed that the emergency should be handled first, i.e. first
find a solution that no longer used the broken truck but that preserved
the schedule for the time before the breakdown. To do so they re-
assigned customers from the broken truck to the other two trucks.
When doing so they also attempted to balance the workloads. They then
attempted to use re-optimisation to reduce the overall travel distance.
However, this typically produced an invalid solution as the optimisation
solver could assign a customer back to the broken truck if the customer
was unlocked.

After realising this, some participants decided to lock all 12
customers to prevent unwanted customer re-assignments before re-
optimising. This only worked for one fortunate participant. The other
participants found that the optimisation solver could not re-optimise
the current solution due to conflicting constraints.

As a result, most participants developed their valid solutions through
an iterative process, in which they re-assigned customers first before
utilising re-optimisation to improve the travelling distance. Once re-
optimisation was done, they re-assigning customers before the next
round of re-optimisation. This process terminated when a valid solution
was found. However, three participants solved the problem using a
purely manual approach to re-assign customers without relying on
re-optimisation to find a solution.

Thus we see that, as hoped, the tool allowed the participants to

flexibly handle a variety of scenarios which the tool was not explicitly
designed to support. This relied upon the ability to add/modify/remove
customer constraints, re-optimise taking into account modified con-
straints, and to manually modify a solution.
Support for the recommendations and their usefulness: Fig. 8
shows the number of participants who used various features of the
interface in each scenario and Fig. 7 summarises participants response
to the questions about the system interface. These, together with the
participant strategies detailed above, allow us to gauge how well the
tool supported each recommendation and at least to some extent the
usefulness/importance of the underlying recommendations. We first
detail the recommendations with strong support.

Recommendation 1: This was well supported by the tool. Most
participants gave 4 out of 5 for the visual representations of the solution
(Q1-1) and constraints (Q1-2) (see Fig. 5). Participants agreed that
both the schedule and street map were clean and well designed. One
participant said “The schedule looks very straightforward, and from the
map, I can clearly see customers as well as their [assigned trucks].”

)

Another commented “It is very easy to understand what is happening.’
implicitly suggesting that the visualisation is useful. Participants did
suggest two improvements (Q1-3): to add route arrows on the street map
to indicate travel direction, and to place the customer lock constraint
label in front of the customer letter. While participant comments did not
directly address the importance of this recommendation, understandable
solution and constraint representation underlie Recommendations 1-4
and 6, most of which we found to be important.

Recommendation 2: This was 5 — e
also well supported by the tool. l I F . - I .
On average, participants ranked 4 T T
4.5 for flexibility (Q2-1). Our 3- .
observations of participants sug- o
gested they understand both cus-
tomer lock and order constraints, 1-
and they could effectively use
these to model more complex re-
quirements. From Fig. 8 we see
that they were used by at least ~ Fig. 7. Par_ticipants’ ratings of inter-
half of the participants in each ~ face questions.
scenario except for Scenario 1 Part 1, and by all in Scenario 3. This
argues strongly for the importance of this recommendation to provide
flexibility in unforeseen situations.

When participants were
asked if there were other

Recommendation

o™

=)
]

—
o

n O

g g
Question

Q2-1
Q3-1-
Q4-1-e
Q7-1-e
Q8-1-
Q9-1

Q1-2-

o

.é {
constraints they would like | s|2 . E %
the system to support (Q2- EEIEIEIE: E E
2), some §uggested that it o m e
would be nice to have a truck Scenario 1
lock constraint which locks Part2 B 1 SRR | 1 | 0
all customers serviced by |Scenario2 2]0f0
the same truck and also pre- | Scenario 3 8 o | o
vents other customers being Scenario 4 6 00

assigned to this particular
truck during re-optimisation.
Some also suggested that Fig. 8. Participants use of different kinds
apart from the existing “rela- Of interaction in each scenario.

tive” customer lock which only guarantees a customer to be serviced by
a specific truck, it would be nice to have an “absolute” customer lock
so that once a customer is locked, the service order of this particular
customer is also locked.

Recommendation 3: This was very well supported. The majority
of the participants ranked 5 for solution manipulations and immediate
feedback after manipulations (Q3-1). All participants agreed that it
was necessary to provide such immediate feedback when changes are
made. One participant commented “I think it (manipulating a solution
and providing feedback) is very useful. Because not only I can see how
distance (one of the objectives) has changed, but also I can see whether
the solution has any violations highlighted in red.” Manual adjustment
of solutions was performed by all participants in all scenarios, strongly
suggesting the importance of this recommendation.

Recommendation 5: This was very well supported with all but one
participant finding re-optimisation very useful (Q5-1) and the other
finding it useful. One participant commented “This is extremely useful
because I feel like I do not need to modify the solution again after
re-optimisation.” Re-optimisation was used by all participants in three
scenarios and by most in Scenario 4.

Some participants suggested that it would be nice to clearly see the
changes between solutions. Two participants advised demonstrating the
solution changes before and after re-optimisation with one saying “After
re-optimisation, the orders of customers may have changed drastically.
Therefore it would be great to show what and where the changes are.”
One participant commented “If it can show animations to indicate how
does one solution transform into another, that would be useful because
it could reduce my memory load and remind me what has changed.”
This should be explored in future work.

Recommendation 8: There was qualified support for this. Most
participants believed having the spinning wheel during re-optimisation
provided sufficient feedback about the ongoing solving process (Q8-

CERDLRVER 56 3-4 1-2 0

1). In particular, one participant commented “It is a must-have. It is
rather a psychological effect telling me that the re-optimisation is still
running.” Another three participants made similar comments. However,
three participants thought the spinning wheel was not useful. This is
because they were too used to it. One participant said “If is so common
that every system has this (a spinning wheel or something similar to
indicate task progress).”

When participants were asked whether more feedback is needed
(Q8-2), several suggestions were provided. Specifically, one participant
mentioned a progress bar and commented “/ think it (the spinning
wheel) is enough since it (the re-optimisation) is fast. If it (the re-
optimisation) is slow, you might want to consider something like a
progress bar.” Another participant suggested having a pop-up message
to briefly summarise all objective values.

Overall, this suggests that while providing feedback on the solver’s
progress is generally appreciated, more research is needed into how to
do so. One must be careful not to provide feedback that leads to over
trust [36].

Recommendation 9 was very well supported. Every participant
believed that it was essential to be able to go back to previous solutions
(Q9-1). For instance, one participant said “It is really useful because
you may make a mistake, and you may also not remember the previous
solution.” All participants also agreed that the history of the solutions
is easy to understand (Q9-2). Participant’s behaviour also showed that
it was relatively common to load a solution from the history in many
scenarios (see Fig. 8).

Recommendations involving multiple solutions received less sup-
port. Recommendations 4, 6 and 7 were generally not as well supported
by participant feedback, as follows.

Recommendation 4: In particular, we were surprised to find that
participants did not find the solution gallery to be useful with an av-
erage ranking of 3 (Q4-1). Only one participant used the bookmark
interaction, and none used the rename interaction though five partici-
pants used the load interaction. When participants were asked how to
improve the solution gallery (Q4-2), one suggested “If there is a way to
[automatically] re-order solutions based on quality, it would be great,
for instance, to place the best solution at the very top and the worst at
the very bottom.”

Recommendation 6: While this was supported with all participants
agreeing that seeing two solutions side-by-side was useful (Q6-1).
In practice we did not observe participants spending a lot of time
comparing solutions. Instead they appeared to focus on one solution
and try and improve it. Considering participants’ suggestions on the
side-by-side layout (Q6-2), more than half of the participants thought
having two solutions presented simultaneously would be sufficient. For
instance, one participant commented “I think two is enough. With more
than two solutions, I won’t be able to simultaneously look at them all.”
However, one participant said “If you can provide options [of how many
solutions to be presented], depending on the size of monitors, they can
make it as many [solutions] as they want to. But I think two is enough.”

Recommendation 7: This had more support with most participants
agreeing that it is beneficial to have several different solutions in the
solution gallery to choose from (Q7-1). In Scenario 3, eight participants
conducted a quick examination of all solutions in the gallery to try to
find the solution satisfying the greatest number of customer requests.
They then used this as their starting point. However, our observations
revealed that after an initial examination, most participants focused on
one solution and did not switch to another solution. Nonetheless, in
Scenarios 4, we did see three participants switch to another solution
when they became stuck. The situation improved after switching,
resulting in better solution performance.

We suspect that one reason that many participants did not use the
gallery or explore multiple solutions was the enforced time limit in each
scenario. We observed that some participants utilised the maximum
amount of time in several scenarios and one participant stated that
“If you do not put the time limit [for each scenario], it (the solution
gallery) would be useful. With the time limit, I have to hurry up and
focus on only one solution.” When asked ‘What if there was no time
limit, then how would you use it?’ they responded “I would like to store

all good solutions in it (the solution gallery) and do comparisons after-
wards.” Another participant said “Without time limitation, I would like
to develop two solutions with one solution per viewport and choose the
better one in the end.” A further participant made a similar comment.

Lack of experience with the tool may also have contributed. One
participant commenting “Maybe if I use this software more, 1 would
have more experience [using the solution gallery].”

Another part of the reason is that participants felt the problems
were simple enough that they did not feel the need to explore multiple
solutions. One said “Actually I only deal with one solution at a time.
But if there are a lot of solutions, then maybe that (the solution gallery)
helps.” Another one responded “It might be more useful when the
problem becomes more complex with more solutions provided.”

We conjecture that a solution gallery seeded with diverse solutions
and the ability to compare solutions would be more useful in more
open-ended tasks such as design involving complex multi-criteria op-
timisation. This would accord with Dayama et al. [18] who found
designers liked to have a gallery of automatically suggested solutions.
Such a gallery should support ranking based on multiple criteria. This
was supported by the suggestions of two participants who mentioned
customer distributions within trucks. Specifically, one said “It would
be better to include the workload balance (customer distribution) infor-
mation of each electrician [for each solution in the solution gallery].”

6 CONCLUSION

We have presented a comprehensive set of design recommendations
(R1-9) for interactive optimisation systems. To the best of our knowl-
edge these are the first such recommendations. An examination of 15
representative systems from the literature revealed that none supported
all of the recommendations. Some recommendations—appropriate vi-
sual representation and modifiable constraints—were well supported,
some were supported by about half of the systems—manual modification
of a solution, user controlled re-optimisation and generation of diverse
solutions—while the remaining recommendations—solution gallery, side-
by-side solution comparison, solver feedback and record of solution
provenance—were rarely supported.

We then evaluated the recommendations using the vehicle routing
problem with time windows (VRPTW) as an exemplar application. We
built an interactive tool for solving these problems that was informed
by the recommendations. Ten participants then used this system to
solve a variety of routing problems. These showed that the tool was
very flexible and could be used to solve variants of VRPTW it was not
originally designed for. Participants found the tool highly usable and,
based on user feedback and behaviour, we found strong support for
most of the underpinning recommendations.

The recommendations supporting exploration of multiple solutions
(R4 and R6) received less support in our observations. We conjecture
that this is likely to reflect the limited time allowed in the study; the
simplicity of the objective function; and the nature of the tasks they
were required to perform. Further studies are required to investigate
this, ideally with longitudinal deployment of interactive optimisation
into a problem-solving workflow.

Of course, in general, more case studies are required in order to
confirm the general applicability of the recommendations. Nonetheless
we believe that our recommendations are a valuable addition to our
understanding of how to design interactive optimisation systems as the
features they suggest are useful but many are not commonly found in
existing systems.

ACKNOWLEDGMENTS

We thank Agilent Technologies Inc. for their support through a Thought
Leader Award and the support of Data 61, CSIRO which is funded by
the Australian Government through the Department of Communica-
tions and the Australian Research Council through the ICT Centre for
Excellence Program. We also thank the reviewers for their insightful
comments and suggestions.

REFERENCES

(1]

(2]

(3]

[4

=

(51

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson,
J. Suh, S. Igbal, P. N. Bennett, K. Inkpen, et al. Guidelines for human-ai
interaction. In Proceedings of the 2019 chi conference on human factors
in computing systems, pp. 1-13, 2019.

D. Anderson, E. Anderson, N. Lesh, J. Marks, B. Mirtich, D. Ratajczak,
and K. Ryall. Human-guided simple search. In AAAI/IAAL, pp. 209-216,
2000.

R. Arcangioli, C. Bessiére, and N. Lazaar. Multiple Constraint Aquisition.
In IJCAI: International Joint Conference on Artificial Intelligence, pp.
698-704. New York City, United States, July 2016.

G. Bailly, A. Oulasvirta, T. Kotzing, and S. Hoppe. Menuoptimizer:
Interactive optimization of menu systems. In Proceedings of the 26th
annual ACM symposium on User interface software and technology, pp.
331-342. ACM, 2013.

A. Bangor, P. T. Kortum, and J. T. Miller. An empirical evaluation of
the system usability scale. Intl. Journal of Human—Computer Interaction,
24(6):574-594, 2008.

C. Barnhart and G. Laporte, eds. Handbooks in Operations Research and
Management Science: Transportation, vol. 14. North Holland, 2006.

N. Beldiceanu and H. Simonis. A constraint seeker: Finding and rank-
ing global constraints from examples. In International Conference on
Principles and Practice of Constraint Programming, pp. 12-26. Springer,
2011.

B. Belin, M. Christie, and C. Truchet. Interactive design of sustainable
cities with a distributed local search solver. In Integration of AI and OR
Techniques in Constraint Programming, pp. 104—119. Springer, 2014.

J. M. Betts, C. Mears, H. M. Reynolds, G. Tack, K. Leo, M. A. Ebert,
and A. Haworth. Optimised robust treatment plans for prostate cancer
focal brachytherapy. In S. K. et al., ed., ICCS 2015, vol. 51 of Procedia
Computer Science, pp. 914-923. Elsevier, 2015.

E. Brochu, T. Brochu, and N. de Freitas. A Bayesian interactive optimiza-
tion approach to procedural animation design. In Proceedings of the 2010
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp.
103-112. Eurographics Association, 2010.

J. Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation
in industry, 189(194):4-7, 1996.

S. Cajot, N. Schiiler, M. Peter, A. Koch, and F. Maréchal. Interactive
optimization with parallel coordinates: exploring multidimensional spaces
for decision support. Frontiers in ICT, 5:32, 2019.

L. Caldas and L. Santos. Painting with light: An interactive evolutionary
system for daylighting design. Building and Environment, 109:154—-174,
2016.

D. Ceneda, T. Gschwandtner, T. May, S. Miksch, H.-J. Schulz, M. Streit,
and C. Tominski. Characterizing guidance in visual analytics. IEEE
Transactions on Visualization and Computer Graphics, 23(1):111-120,
2016.

D. Coffey, C.-L. Lin, A. G. Erdman, and D. F. Keefe. Design by drag-
ging: An interface for creative forward and inverse design with simulation
ensembles. [EEE transactions on visualization and computer graphics,
19(12):2783-2791, 2013.

C. Collins, N. Andrienko, T. Schreck, J. Yang, J. Choo, U. Engelke,
A.Jena, and T. Dwyer. Guidance in the human—-machine analytics process.
Visual Informatics, 2(3):166—180, 2018.

M. L. Cummings, J. J. Marquez, and N. Roy. Human-automated path
planning optimization and decision support. International Journal of
Human-Computer Studies, 70(2):116-128, 2012.

N. R. Dayama, K. Todi, T. Saarelainen, and A. Oulasvirta. Grids: Inter-
active layout design with integer programming. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, pp. 1-13,
2020.

L. De Raedt, A. Passerini, and S. Teso. Learning constraints from ex-
amples. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

P. Deransart and M. V. Hermenegildo. Analysis and visualization tools for
constraint programming: constraint debugging. Number 1870. Springer
Science & Business Media, 2000.

J. J. Dudley and P. O. Kristensson. A review of user interface design for
interactive machine learning. ACM Transactions on Interactive Intelligent
Systems (TiiS), 8(2):1-37, 2018.

M. R. Endsley. From here to autonomy: lessons learned from human—
automation research. Human factors, 59(1):5-27, 2017.

[23]

[24]

[25]

(26]

[27]

[28]

[29]

[32]

[33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

K. Z. Gajos, D. S. Weld, and J. O. Wobbrock. Automatically generating
personalized user interfaces with supple. Artificial Intelligence, 174(12-
13):910-950, 2010.

S. Goodwin, C. Mears, T. Dwyer, M. G. de la Banda, G. Tack, and M. Wal-
lace. What do constraint programming users want to see? Exploring the
role of visualisation in profiling of models and search. IEEE Transactions
on Visualization and Computer Graphics, 23(1):281-290, 2017.

J. Hakanen, K. Miettinen, and K. Sahlstedt. Wastewater treatment: New
insight provided by interactive multiobjective optimization. Decision
Support Systems, 51(2):328-337, 2011.

F. S. Hillier. Introduction to operations research. Tata McGraw-Hill
Education, 2012.

A. Holzinger, M. Plass, M. Kickmeier-Rust, K. Holzinger, G. C. Crisan,
C.-M. Pintea, and V. Palade. Interactive machine learning: experimental
evidence for the human in the algorithmic loop. Applied Intelligence,
49(7):2401-2414, 2019.

C. V. Jones. Visualization and optimization. ORSA Journal on Computing,
6(3):221-257, 1994.

U. Junker. QUICKXPLAIN: preferred explanations and relaxations for
over-constrained problems. In D. L. McGuinness and G. Ferguson, eds.,
Proceedings of the Nineteenth National Conference on Artificial Intel-
ligence, Sixteenth Conference on Innovative Applications of Artificial
Intelligence, July 25-29, 2004, San Jose, California, USA, pp. 167-172.
AAAI Press / The MIT Press, 2004.

A. Kapoor, B. Lee, D. Tan, and E. Horvitz. Interactive optimization for
steering machine classification. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 1343—-1352. ACM, 2010.
D. A. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann. Mastering the
Information Age: Solving Problems with Visual Analytics. Eurographics
Association, 2010.

G. W. Klau, N. Lesh, J. Marks, and M. Mitzenmacher. Human-guided
search. Journal of Heuristics, 16(3):289-310, 2010.

J. Koch, A. Lucero, L. Hegemann, and A. Oulasvirta. May ai? design
ideation with cooperative contextual bandits. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, pp. 1-12,2019.
T. Kulesza, M. Burnett, W.-K. Wong, and S. Stumpf. Principles of explana-
tory debugging to personalize interactive machine learning. In Proceedings
of the 20th international conference on intelligent user interfaces, pp. 126—
137, 2015.

J. Liu, T. Dwyer, K. Marriott, J. Millar, and A. Haworth. Understanding
the relationship between interactive optimisation and visual analytics in
the context of prostate brachytherapy. IEEE Transactions on Visualization
and Computer Graphics, 24(1):319-329, 2018.

J. Liu, K. Marriott, T. Dwyer, and G. Tack. Increasing user trust in
optimisation through feedback and interaction. submitted and included in
supplementary material.

J. Matejka, M. Glueck, E. Bradner, A. Hashemi, T. Grossman, and G. Fitz-
maurice. Dream lens: Exploration and visualization of large-scale gen-
erative design datasets. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pp. 1-12, 2018.

D. Meignan, S. Knust, J.-M. Frayret, G. Pesant, and N. Gaud. A review
and taxonomy of interactive optimization methods in operations research.
ACM Transactions on Interactive Intelligent Systems (TiiS), 5(3):17, 2015.
K. Miettinen. Survey of methods to visualize alternatives in multiple
criteria decision making problems. OR spectrum, 36(1):3-37, 2014.

T. Miihlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and M. Streit. Opening
the black box: Strategies for increased user involvement in existing algo-
rithm implementations. IEEE transactions on visualization and computer
graphics, 20(12):1643-1652, 2014.

N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack.
MiniZinc: Towards a standard CP modelling language. In C. Bessiere,
ed., Principles and Practice of Constraint Programming - CP 2007, 13th
International Conference, CP 2007, Providence, RI, USA, September 23-
27, 2007, Proceedings, vol. 4741 of Lecture Notes in Computer Science,
pp. 529-543. Springer, 2007.

J. Nocedal and S. Wright. Numerical optimization. Springer Science &
Business Media, 2006.

G. Nodalo, J. M. Santiago III, J. Valenzuela, and J. A. Deja. On building
design guidelines for an interactive machine learning sandbox application.
In Proceedings of the 5th International ACM In-Cooperation HCI and UX
Conference, pp. 70-77, 2019.

B. O’Callaghan, B. O’Sullivan, and E. C. Freuder. Generating corrective
explanations for interactive constraint satisfaction. In P. van Beek, ed.,

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

Principles and Practice of Constraint Programming - CP 2005, pp. 445—
459. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

J. Patten and H. Ishii. Mechanical constraints as computational constraints
in tabletop tangible interfaces. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pp. 809-818. ACM, 2007.

P. Pirolli and S. Card. The sensemaking process and leverage points
for analyst technology as identified through cognitive task analysis. In
Proceedings of international conference on intelligence analysis, vol. 5,
pp. 2—4. McLean, VA, USA, 2005.

H. C. Purchase, E. Hoggan, and C. Gorg. How important is the “mental
map”’?-an empirical investigation of a dynamic graph layout algorithm.
In International Symposium on Graph Drawing, pp. 184—195. Springer,
2006.

H. C. Purchase and A. Samra. Extremes are better: Investigating mental
map preservation in dynamic graphs. In International Conference on
Theory and Application of Diagrams, pp. 60-73. Springer, 2008.

E. D. Ragan, A. Endert, J. Sanyal, and J. Chen. Characterizing prove-
nance in visualization and data analysis: an organizational framework of
provenance types and purposes. IEEE transactions on visualization and
computer graphics, 22(1):31-40, 2015.

D. Schneeweiss and P. Hofstedt. Fdconfig: a constraint-based interactive
product configurator. In Applications of Declarative Programming and
Knowledge Management, pp. 239-255. Springer, 2011.

C. Schulte, M. Lagerkvist, and G. Tack. Gecode. Software and documen-
tation available from https://www.gecode.org.

C. Schumann, C. Rieder, S. Haase, K. Teichert, P. Siiss, P. Isfort, P. Bruners,
and T. Preusser. Interactive multi-criteria planning for radiofrequency
ablation. International journal of computer assisted radiology and surgery,
10(6):879-889, 2015.

J. P. Shim, M. Warkentin, J. F. Courtney, D. J. Power, R. Sharda, and
C. Carlsson. Past, present, and future of decision support technology.
Decision support systems, 33(2):111-126, 2002.

G. Simonin, C. Artigues, E. Hebrard, and P. Lopez. Scheduling scientific
experiments for comet exploration. Constraints, 20(1):77-99, 2015.

M. Stglevik, T. E. Nordlander, A. Riise, and H. Frgyseth. A hybrid
approach for solving real-world nurse rostering problems. In J. H. Lee,
ed., CP 2011, vol. 6876 of Lecture Notes in Computer Science, pp. 85-99.
Springer, 2011.

C. Thieke, K.-H. Kiifer, M. Monz, A. Scherrer, F. Alonso, U. Oelfke, P. E.
Huber, J. Debus, and T. Bortfeld. A new concept for interactive radio-
therapy planning with multicriteria optimization: First clinical evaluation.
Radiotherapy and Oncology, 85(2):292-298, 2007.

K. Todi, D. Weir, and A. Oulasvirta. Sketchplore: Sketch and explore
with a layout optimiser. In Proceedings of the 2016 ACM Conference on
Designing Interactive Systems, pp. 543-555, 2016.

E. Tufte and P. Graves-Morris. The visual display of quantitative informa-
tion.; 1983, 2014.

J. J. Van Wijk. Views on visualization. IEEE transactions on visualization
and computer graphics, 12(4):421-432, 2006.

https://www.gecode.org

	Introduction
	Background
	Design RecommendationsGuidelines for Interactive Optimisation
	Reflections of Design RecommendationsGuidelines in Existing Systems

	Interactive Optimisation System for VRPTW
	System Design
	System Interaction

	User Study
	Study Design
	Results & Discussion

	Conclusion

