
ImAxes: Immersive Axes as Embodied Affordances
for Interactive Multivariate Data Visualisation

Maxime Cordeil1

maxime.cordeil@monash.edu
Andrew Cunningham2

andrew.cunningham@unisa.edu.au
Tim Dwyer1

tim.dwyer@monash.edu
Bruce H. Thomas2

bruce.thomas@unisa.edu.au
Kim Marriott1

kim.marriott@monash.edu
1Monash University, Melbourne, Australia

2University of South Australia, Adelaide, Australia

ABSTRACT
We introduce ImAxes, an immersive system for exploring
multivariate data using fluid, modeless interaction. The ba-
sic interface element is an embodied data axis. The user can
manipulate these axes like physical objects in the immersive
environment and combine them into sophisticated visualisa-
tions. The type of visualisation that appears depends on the
proximity and relative orientation of the axes with respect to
one another, which we describe with a formal grammar. This
straight-forward composability leads to a number of emer-
gent visualisations and interactions, which we review, and
then demonstrate with a detailed multivariate data analysis
use case.

ACM Classification Keywords
H.5.2 User Interfaces: Information Interfaces and Presenta-
tion (e.g., HCI)

INTRODUCTION
The rapid development and commodification of virtual-
reality head-mounted display devices in recent years has been
largely motivated by obvious opportunities in entertainment.
Devices like Microsoft HoloLens represent a similar step-
change in the adoption of Augmented Reality for applications
like situated architectural walk-throughs [56] and overlays
of engineering models on their real-world counterparts [43].
These initial explorations are of applications that are impos-
sible with traditional desktop computing environments. With
these types of devices becoming ubiquitous, people are start-
ing to wonder how more traditional computing applications
such as data analysis will look in Virtual and Augmented Re-
ality (VR/AR). A new topic of study emerging from the In-
formation Visualisation (InfoVis) and AR/VR research com-
munities is to explore how data analysis can be reimagined
with—and benefit from—such emerging display and interac-
tion technologies [9, 1].
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More fundamentally, in recent years information visualisa-
tion researchers have been calling for research into interaction
modalities that go beyond Mouse and Keyboard to provide
greater freedom of expression [34] and more fluid interaction
[16]. In this paper we explore an interaction paradigm built
around the notion of data axes as embodied affordances for
the construction of a variety of rich, immersive data visuals
for exploring multivariate datasets. The axes can be placed
anywhere in space and the type of data visual that appears
is determined purely by their proximity and orientation with
respect to one another.

We introduce ImAxes (Immersive Axes), an interactive multi-
dimensional visualisation tool that relies on the arrangement
of data axes in space. ImAxes is built in the Unity game
engine, and can be used with most common Virtual Real-
ity headset and tracked controllers. We demonstrate its use
with the HTC Vive Virtual Reality headset, which provides
a room-sized tracked interaction space that allows users to
walk, interact with their full bodies, and provides sufficient
space for users to create a whole suite (“gallery”) of data vi-
sualisations within ImAxes.

ImAxes is a modeless visualisation system. No menus or
hotkeys are required; users’ actions are all available by direct
manipulation of the objects within the virtual environment.
We define a formal grammar that allows for the construction
of a diversity of data representations based only on the spatial
arrangement of axes. We then show how ImAxes allows the
creation of familiar InfoVis visualisations, and how it allows
for the emergence of new types of meaningful visualisations
for multivariate data exploration. Then we detail both the
designed and emergent interactions of ImAxes that we have
identified and finish by demonstrating how ImAxes can be
used in a realistic multivariate data exploration scenario.

RELATED WORK
Interactive Multidimensional Data Visualisation (MDV)
is a well-explored subject in Information Visualisation and
statistics, yet research is still very active in this domain.
One class of approaches use dimension reduction techniques
from statistics. For instance, Multidimensional Scaling
(MDS) [8] seeks to preserve the distance between the high-
dimensional data points when they are projected onto a 2- or
3-dimensional scatterplot, with the aim of showing clusters
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and outliers. However, like other dimension reduction tech-
niques, MDS is “lossy” and can be difficult to understand by
non-expert users.

Thus, variations of more traditional visual idioms have been
developed to show many data dimensions through various
types of small-multiple views. This type of relatively straight-
forward dimension-by-dimension exploration of multivari-
ate data through small-multiple views has proved immensely
popular in Business Intelligence (BI) software [44]. Scatter-
plot matrices (SPLOMs) display all 2D combinations of data
dimensions in a matrix form. Users can visually detect pat-
terns between dimension pairs, a process called “Scatterplot
Diagnostics” or Scagnostics by the Tukeys [58]. However,
the usefulness of SPLOM views is limited; as dimensionality
increases, a traditional desktop display only offers a limited
surface to display data.

Parallel Coordinates Plots (PCPs) are an alternative way
to visualise data across dimensions, through axes posi-
tioned parallel—rather than orthogonally—to one another
[25]. Each data point is represented as a sequence of line
segments, intersecting each axis at a position corresponding
to the data point’s attribute value in the corresponding dimen-
sion. Unlike SPLOMs, in PCPs only the relations between
adjacent axes are easily visible.

Regardless of the visualisation technique, to avoid cluttered
displays when dealing with high-dimensional datasets, inter-
action is required to filter and interactively explore the data.
Focus+context techniques such as brushing and linking of
views were introduced to highlight a subset of data points
across visualisations [7]. Animations have been used to im-
prove the understanding of correlations between dimensions
of a dataset. A compelling example of animation in MDV is
the use of 3D rotation to transition between 2D visualisations
of dimensional pairs in a scatterplot matrix [15].

Researchers have explored direct interactions with MDV sys-
tems using mouse [25, 55] or multitouch [32, 46] and drag-
and-drop style interactions to assign data dimensions to vi-
sual encodings and are now fairly common in BI tools such
as Tableau. However, the affordances for interaction in these
standard tools are usually a simple list of attributes in a WIMP
interface. The interfaces remain highly constrained by the
particular set of visual idioms supported by the tools. Ar-
guably, the state of the art in InfoVis system design is around
more flexible systems that use a component model to allow
more flexible construction of data visualisations through di-
rect interaction [20, 36, 47], though usually in non-immersive
environments that require WIMP interaction.

In this paper, we take inspiration from a proposal for less con-
strained (yet still mouse- and WIMP-based) interactions with
axes components in a 2D canvas style view by Claessen and
van Wijk [10]. Their system lets users freely draw lines on
the canvas and assign them to data dimensions, link them to
other axes, and determine the style of visualisation (PCP or
scatterplot) through contextual menus. Using this interface,
the authors are able to create a number of highly novel com-
binations of PCPs and scatterplots. In this paper we also use

Figure 1. ImAxes design concept sketches.

axes as the fundamental building block, but make the interac-
tion fluid by eliminating the context menu through a grammar
based on the positions of the axes that entirely determines the
visualisation. By implementing this interface in a virtual en-
vironment, the axes become embodied affordances for visu-
alisation construction.

Immersion, Presence and Embodiment In the domain of
VR, the terms immersion, presence and embodiment have a
range of different definitions. We begin with the notions de-
veloped by Slater et al. [17, 31, 50, 51]. Presence is a state
of consciousness, the (psychological) sense of being in the
virtual environment. Immersion describes the extent to which
technology is capable of delivering a vivid illusion of real-
ity to the senses of a human participant. Thus, an immer-
sive system is capable of producing a sensation of presence
in the user. Embodiment is when a virtual body is spatially
coincident with a user’s physical body. The use of VR in this
manner enables the user to see through the eyes of that virtual
body and the virtual body reacts in concert with the user’s ac-
tions. In, for example, the HTC Vive VR system, the user’s
head and hand positions are accurately tracked, supporting a
degree of natural proprioception [39].

Dourish takes a broader definition of embodiment relating
not-only to the user’s body, but to objects in the computing
environment having a presence in the user’s space that some-
how embodies their potential for function. “What embodied
interaction adds to existing representational practice is the
understanding that representations are also themselves arti-
facts. Not only do they allow users to ‘reach through’ and
act upon the entity being represented, but they can also them-
selves be acted upon—picked up, examined, manipulated, and
rearranged.” [14, p. 169] Dourish goes on to imply that a
well-designed artefact can transcend a designer’s intended
use, and be employed by the user to create new meaning. We
believe ImAxes demonstrates this principle through the set of
novel visualisations and interactions that emerge through sim-
ple manipulation of the axes as described later in this paper.
Our original design concept is illustrated in Fig. 1.

Jacob et al. examine Reality-Based Interactions [26] as a
means of providing a more expressive form of human com-
puter interaction that provides a unification of a set of emerg-
ing interaction concepts. In particular, these include four
themes: 1) naı̈ve physics, 2) body awareness and skills, 3) en-
vironment awareness and skills, and 4) social awareness and
skills. ImAxes leverages these themes to provide a coherent
user experience. The virtual world the user operates in has
a consistent set of laws of naı̈ve physics. As with embodied
interactions, we will leverage the user’s sense of propriocep-
tion. ImAxes will provide an environment where users will



have a sense of their environs and retain proficiencies for ne-
gotiating, manipulating, and navigating.

Visualisation in Virtual Reality and 3D InfoVis

VR has been employed for scientific visualisation [6], in-
formation visualisation [45] and immersive browsing of im-
ages [48]. Virtual environments have also proven effective for
other numerous scientific applications such as brain tumour
analysis [64], archaeology [33, 52], geographic information
systems [4], geosciences [22, 24] or physics [30]. In such
so-called Scientific Visualisation applications, where the data
is inherently spatial, there is little debate about the benefits
of 3D rendering and the use of stereoscopic VR and AR for
making the best use of people’s spatial perception to under-
stand the 3D space of the data.

When visualising abstract data—without an inherent spatial
arrangement—there is more freedom to adapt the data to the
dimensions of the user’s display. Researchers in this field,
known broadly as InfoVis, have been very cautious about the
use of 3D representations and mainly focused on 2D visual-
isation techniques that are well suited to the current desktop
display modality. Projecting 3D data visualisations onto a
2D screen suffers from inherent issues due to occlusions, per-
spective distortion and interaction problems using a 2D input
device [41, Ch. 6]. Some previous studies suggest that 3D
representations may show high-level structure in 3D shapes
and terrain more clearly [53, 54], while others suggest that
2D representations are preferable for precise manipulation or
accurate data value measurement or comparison and advocate
the use of linked 2D and 3D representations [54, 57]. Other
studies showed benefits for 3D network visualisation [59, 60,
21]. There are mixed results on the effectiveness of 3D scat-
terplots when compared to 2D scatterplots. Studies providing
binocular depth cues found benefits [35, 62, 42] while those
using only monocular cues were mixed, with one finding ben-
efits [19] but others finding 2D was more effective [61, 49].

VR technology is maturing rapidly. We believe that we need
to explore immersive data visualisation to be ready to exploit
the technology fully as it becomes mainstream and to support
users working in native 3D environments with high-quality
stereo rendering, head-tracking and true spatial input devices.
While this does not imply that all data visualisations must use
a depth dimension, it does raise the questions of, given a good
capability to do so, how and when should we take advantage
of this capability? In ImAxes the third spatial dimension is
available for users to use as they please. It is a system for
creating and manipulating visualisations (2D, 2.5D and 3D)
in a VR immersive workspace. Thus, it has quite a different
focus to the studies cited above, each dealing with the efficacy
of a single 3D visualisation. While users are free to create 3D
scatter plots they are also free to use 2D visualisations and
use the third dimension to arrange these in meaningful ways,
such as stacking them for comparison [11, 5] or to leverage
from so-called Spatio-Data Coordination [12].

IMAXES GRAMMAR AND DEFINITIONS
At a high level, ImAxes is a system that allows the creation of
a variety of data visualisations based on the direct manipula-

STAGE 1 STAGE 2
(a)             (b)             (c) (a)             (b)             (c) (a,b)                  (b,c)             

Figure 2. Main steps in ImAxes recognition and visualisation. On the left
are the symbols in the ImAxes grammar (a) S1, (b) S2 and (c) S3. In the
middle the corresponding visualisation and on the right facet linking.

tion of data axes in 3D space. The main steps in this creation
are shown in Fig. 2.

Our goals are to define a system that is expressive enough
to create standard visualisations for understanding multi-
dimensional data: scatterplots, SPLOMs, PCPs and their
three-dimensional variants. We want the system to be gen-
erous in the sense that the user can combine the elements
freely, with virtually any combination producing some sort of
visualisation, thus encouraging exploration of the data. We
want there to be a physical affordance so that data visualisa-
tions look and behave like physical objects [18]. Finally, we
want the system to be declarative in the sense that the order
of construction should not matter. We feel declarativeness is
important in immersive VR because it means that the user can
simply imagine something in their mind’s eye, and then place
the elements in 3D space to create it. The appearance of the
object being created gives full information about its construc-
tion. This (mostly) accords to our experience in the real world
where the appearance of a physical object reveals its compo-
nents and how they should be placed together to make it.

One of the strengths of ImAxes is that it is built upon a simple
grammar which formalises the rules for constructing visuali-
sations in the VRE using axes’ spatial placement. The formal
description of data visualisation using grammars is an active
field of research. Notable examples include Mackinlay [37]
who formalised the primitive languages and operators that de-
fine visual information, the formalisation of two-dimensional
visual languages like circuit diagrams [38], the “Grammar of
Graphics” [63] which provides a language to create statistical
charts, and grammar-based approaches for defining buildings
and other objects in virtual worlds [40, 23]. Our contribu-
tion is a grammar of graphics based on the spatial agency of
data axes in a 3D immersive virtual environment. The great
strength of a grammatical approach is that grammar rules are
compositional, allowing users to combine the basic elements
in open-ended and unforeseen ways.

The basic element in the ImAxes grammar is the axis. An
ImAxes workspace involves a set of axes A. An axis is repre-
sented by the tuple axis(s,e,d) where s and e are the positions
in 3D space of the axis start and end points, and d is the data
attribute linked to the axis. This is the only token in the gram-
mar. The three other symbols in the grammar model are the
1-, 2- and 3-D structures that can be built with axes:

S1(~v,A1) – linear concatenation of axes. ~v is the canonical
unit vector giving the direction of the axis and A1 ⊆ A

S2(~v1,~v2,A1,A2) – combination of axes forming a 2D
SPLOM. ~v1 and ~v2 are orthogonal vectors, axes in A1 parallel
to ~v1, axes in A2 parallel to ~v2.



S1

s

e
d S1(dir(s,e),{axis(s,e,d)}) ← axis(s,e,d) (R1)

S1

S1

S1

S1(~v1,A1 ∪A2) ← S1(~v1,A1),S1(~v2,A2) s.t. (~v1, ~v2)∧ (A1 ∪A2) (R2)

S2 S1

S1

S2(~v1, ~v2,A1,A2) ← S1(~v1,A1),S1(~v2,A2) s.t. (~v1, ~v2)∧ (A1 ∪A2) (R3)

S2 S2 S1 S2(~v1, ~v2,A1,A2 ∪A3) ← S2(~v1, ~v2,A1,A2),S1(~v3,A3) s.t. (~v2, ~v3)∧ (A1 ∪A2 ∪A3) (R4)

S2

S3
S1

S3(~v1, ~v2, ~v3,A1,A2,A3) ← S2(~v1, ~v2,A1,A2),S1(~v3,A3) s.t. (~v1, ~v2, ~v3)∧ (A1 ∪A2 ∪A3) (R5)

S3S3 S1

S3(~v1, ~v2, ~v3,A1,A2,A3 ∪A4) ← S3(~v1, ~v2, ~v3,A1,A2,A3),S1(~v4,A4) s.t. (~v3, ~v4)∧ (A3 ∪A4) (R6)

Figure 3. Grammar Rules (Ri) for ImAxes where A j ⊆ A. There exist symmetric rules for R4 : A1 ∪A3 and R6 : A1 ∪A4,A2 ∪A4.

Figure 4. Multi-set grammar reduction vs set grammar reduction. (a)
shows 3 axes, not all of which are orthogonal so it is not a 3D scatterplot.
In a multi-set grammar this is ambiguous and can lead to either recog-
nising (b) or (c). However in a set grammar (d) there is no ambiguity
and two 2D scatterplots are recognised through repeated application of
(in this case) R1, R3 and R4.

S3(~v1,~v2,~v3,A1,A2,A3) – axes forming a 3D SPLOM, axes in
Ai parallel to ~vi and ~v1...3 mutually orthogonal.

The grammar rules for constructing these objects are straight-
forward, Fig. 3. Reflecting the aim for physical affordance
we require the axes in each of the various symbols to actually
touch the other, so that they form a kind of physical skeleton
for the data visualisation. Reflecting the aim for generosity
we do not restrict the arrangement beyond this, except that
the axes must be parallel or orthogonal to the other axes in
the object.

The rules capture that an S1 is either a single axis or two par-
allel connected S1; that a S2 is made up of two orthogonal S1
which can be extended by adding other connected S1s that are
parallel with one the original S1s; and, that a S3 is made up
of an S2 and an orthogonal S1 and can be extended by adding
other connected S1. The rules make use of the following func-
tions:

(~u,~v) – holds if vectors~u and~v are parallel;

(~u,~v) – holds if~u and~v are orthogonal, similarly (~u,~v,~w);

dir(s,e) – returns the unit vector along line (s,e); and

(A′) – holds if all axes in A′ ⊆ A are spanned by a tree
through pairs of axes touching at their ends.

One of the more complicated questions was the underlying
semantics of the grammar rules: grammars for visual lan-
guages are typically either multi-set grammars which be-
have like traditional string grammars in that when a sym-
bol is recognised its component symbols are consumed by
the reduction, or a set grammar (also formalised as a defi-

nite clause logical formula) in which the component symbols
are not consumed but can instead be involved in other reduc-
tions [38].

We decided to formalise reduction using the set grammar se-
mantics in which symbols are not consumed in a reduction.
This was driven by the desire for declarativeness. The ex-
ample in Fig. 4 shows the problem. With multi-set grammar
semantics this will be recognised as a S1 and a S2, but the
result is not deterministic and depends upon the order of re-
duction. Thus, the grammar is ambiguous, not declarative and
two identical collections of axes may not give rise to the same
visualisation, with the result depending upon the order of re-
duction. On the other hand, with set grammar semantics this
will be recognised as two S2. This reading also accords with
physical affordance as physical objects can belong to more
than one higher order shape: for instance a corner post in a
house forms part of the two walls.

We therefore use set grammar semantics in reduction: sym-
bols are not consumed. This ensures that the result of parsing
is deterministic and that it is declarative. The result of gram-
mar reduction is the set of maximal symbols, as we do not
want intermediate results. More exactly, a symbol s1 contains
symbol s2 if axes(s2) ⊂ axes(s1) where axes(s) returns the
set of axes in the symbol. A symbol is maximal if no other
symbol contains it. Thus, if a 2-D scatterplot forms part of a
3-D scatterplot, only the 3-D scatterplot will be recognised.

After the various grammar symbols have been recognised
there are two more steps in the ImAxes visualisation pipeline.
The next step is to generate the associated data visualisation
for each of the symbols (see Fig. 2):

S1(v,A) – a histogram showing frequency distribution for
each axis a ∈ A.

S2(v1,v2,A1,A2) – a 2D SPLOM with a scatterplot for each
pair of connected orthogonal axes a1 ∈ A1 and a2 ∈ A2.

S3(~v1,~v2,~v3,A1,A2,A3) – a 3D SPLOM with a 3D scatterplot
for each triple of connected orthogonal axes.

Note that 2D and 3D scatterplots are just simple cases of the
2D and 3D SPLOMs respectively. Also note that the 2D and
3D scatterplots will be overlaid if there is more than one axis
for one of the dimensions.



(a) Histogram (b) 2D Scatterplot (c) 3D Scatterplot (d) SPLOM

(e) Parallel Coordinate Plot (PCP) (f) Linked scatterplots

Figure 5. Familiar 2- and 3-D visualisations built with ImAxes.

The final step is to visually link elements in these different vi-
sualisations, as illustrated in STAGE 2 of Fig. 2. Each of the
visualisations (histograms, 2D and 3D scatterplot) is called a
visualisation facet. We use lines to link the same elements in
nearby facets. This is inspired by similar linking in 2.5D visu-
alisations. The centres of the facet must be within a threshold
distance from each other. A facet can be linked to more than
one other facet. Remarkably, as we shall see, such facet link-
ing allows us to produce PCPs, 3D PCPs and a wide range of
other charts in a very natural way.

IMAXES VISUALISATIONS
In ImAxes, specific manipulation and arrangement of axes in
3D space enables the straight-forward construction of famil-
iar InfoVis visualisations in two and three dimensions. How-
ever, the user is free to place axes in configurations that cor-
respond to no known InfoVis idiom, but which can still reveal
useful properties of the data.

By directly manipulating and positioning axes in space,
ImAxes uses embodied spatial data mapping, i.e. when a user
builds a scatterplot the axis parallel to the ground corresponds
to the X axis of a visualisation, the Y axis is the axis perpen-
dicular to the ground, and the Z axis is the axis looking at, or
away from, the user’s point of view.

Familiar Visualisations
We first present how standard InfoVis idioms can be produced
with ImAxes (see Fig. 5), and later we show how visualisa-
tions that we did not predict are produced.

Histograms – A lone axis (S1) shows a histogram of the data
distribution (Fig. 5(a)).

Scatterplots – Positioning two axes perpendicular to each
other creates a 2D scatterplot (a 1×1 S2), Fig. 5(b). Adding
a third axis perpendicular to the first two extends this to a 3D
scatterplot (a 1×1×1 S3), Fig. 5(c).

Scatterplot Matrices (SPLOM) – 2D scatterplots can be ex-
tended to SPLOMs by aligning additional axes along the X
and Y axes. Fig. 5(d) shows a 2×2 S2.

PCPs – Parallel Coordinates Plots are created in ImAxes
by positioning a series of parallel axes nearby each other.
Fig. 5(e) is simply 5 parallel S1.

Linked Scatterplots – Two or more 2D scatterplots placed
near each other create a 2D linked visualisation [11], or 2.5D
PCP.

Emergent Visualisations
The spatial manipulation and positioning of axes and visual-
isation in ImAxes lead to the emergence of new and useful
types of visualisations that we did not anticipate in designing
our grammar and system. See Fig. 6.

3D circular connected Parallel Coordinate Plots – For exam-
ple, it is possible to arrange axis circularly to form a closed
PCP. Placing an axis at the centre of this type of circular PCP
creates a one-to-many linked view. In Fig. 6(a) the visualisa-
tion shows the relation of the central axis to all the other axes.
This type of linked view is a novel approach to perform fo-
cus+context operations where the focused object is the central
axis.

Connected “plot superposition” – The introduced grammar
makes it possible to overlay scatterplots. When positioning
three axes in a ‘U’ shape, two S2 are recognised. Since they
are closer than the linking threshold, links appear between
similar points in each plot. We found this type of visualisation
is useful when visually inspecting the relations between two
visualisations that share same axi(e)s.

Similarly, a 3D connected overlaid plot is produced when
placing a fourth axis aligned with one of the three axes of an
existing 3D scatterplot. The two 3D scatterplots appear at the
same position and get linked. Obviously, such superposition



(a) Circular 1 to many PCP (b) Overlaid SPLOM (c) Linking to Y-axis (d) X-axis link

(e) Linking to data points (f) Links to 3D SPLOM (g) Linked 2- and 3-D SPLOMs (h) Linked 3D SPLOMS

Figure 6. Emergent Visualisations.

is only useful when the data in each plot are well separated or
sparse.

PCP Brushing – Links appear between two SPLOMs when
they are within a given distance. To limit clutter, when a sin-
gle axis a links to a SPLOM s with more than one axes, the
system considers the distances between the centre of a, the
centre of s and the centre of each axis contained in s, and links
are shown only between the closest pair. For example, Figs.
6(d),6(c),6(e) show links appearing between a wand axis and
the x-axis, the y-axis and the data points, respectively. Thus,
the user can quickly “wave” the single axis around a SPLOM
(like a TSA agent) and quickly compare correlations between
their wand axis and each of the axes in the SPLOM or with
the data points inside the SPLOM. We call this feature PCP
Brushing (or Angel Dusting).

Linked 3D Scatterplots – The same rules that cause linking
between 1- and 2-D scatterplots also apply to 3D scatterplots.
Thus, we can link a 2D plot to a 3D plot (Fig. 6(g), or a 3D
plot to another 3D plot (Fig. 6(h)). We can also use a whole
plot like a wand for Angel Dusting.

3D SPLOM – We discovered using ImAxes that it is possible
with our system to form 3D scatterplot matrices from existing
3D scatterplots, Fig. 7(a).

Tree of linked visualisations – As with [10], ImAxes offers the
freedom of linking plots in many different ways, however in
3D it is practical to link many 2- or 3-D plots to each other.
A compelling example is the fabrication of a hierarchy tree
linking 2D scatterplots, Fig. 7(b), linking along logical paths
defined by categorical data. For example, in this tree of 2D
linked visualisations, the user can follow the divergent red
and the yellow paths through different pairwise plots.

(a) 3D SPLOM (b) Tree linking

Figure 7. Complex emergent visualisations.

IMAXES INTERACTIONS AND METAPHORS
A principle of ImAxes is to provide the user with extra spatial
degrees of freedom to explore multivariate data in a Virtual
Reality Environment (VRE). Building the SPLOM and visual
link elements described by our grammar requires the free cre-
ation and spatial manipulation of axes and the derived visual-
isations. Hence it is natural to leverage 6 DOF tracked hand
controllers to directly manipulate these elements in 3D space,
letting the user create, orient, position and discard elements
with natural actions. Similar to a mouse drag-and-drop inter-
action, ImAxes uses a grab and place interaction to manipu-
late visualisation elements in a VRE. This interaction consists
of colliding a hand controller with a visualisation element and
pulling the controller’s trigger, thereby attaching the element
to that controller. Moving the controller in space will directly
manipulate the position and orientation of that element. Ma-
nipulating the low-level axis elements will stretch and distort
associated higher order elements (SPLOMs and linked visu-
alisations) to accommodate the manipulations. Grabbing and
manipulating higher-level elements will directly manipulate
any associated lower-level elements. For example, grabbing
and rotating a SPLOM will rotate the associated axes of that



SPLOM in the expected manner to maintain its appearance.
Releasing the controller’s trigger will “place” the element in
its current position.

Attribute Shelf
Data exploration in ImAxes begins with a collection of axes
loaded from a dataset, arranged in a series of rows, to invoke a
book shelf metaphor. A user can grab any of these axes and—
when pulled from their origin beyond a certain threshold—
will duplicate the axis in the user’s hand and snap the original
axis back to the shelf. We leverage haptic feedback in the
controllers to provide users with a cue to this threshold.

Axis Interactions
Each axis corresponds to a data attribute from the dataset.
An arrowhead at the end of the axis indicates the direction of
increasing attribute value, and minimum and maximum value
labels display the attribute range. A text label identifies the
data attribute. All labels are dynamically reoriented to face
the user.

To support the direct manipulation metaphor, filtering and ad-
justing the range of the axis occurs directly on the axis itself.
Axes have two pairs of interactive widgets that allow the user
to perform:
scaling – adjust the range [dmin, dmax] that defines the domain
of the attribute represented by the axis, Fig. 8(a) (1).
filtering – adjust the range [ fmin, fmax] that will filter data
points outside of this range, Fig. 8(b) (2).
The data points that are not within the specified ranges disap-
pear from the visualisation.

These widgets initially appear in-line with the axis (Fig. 8(a),
8(b), left). When a hand controller approaches, indicating that
the user may want to manipulate the axis, these widgets ani-
mate out of alignment with their axis to allow better targeting
and manipulation (Fig. 8(a), 8(b), centre). This reduces clut-
ter in the VRE, while still affording direct manipulation of the
widgets when needed. The direct manipulation of the widgets
results in a continuous animation when scaling the axis (Fig.
8(a)) or performing a range filtering (Fig. 8(b)). The fluid
control and feedback of the widgets keep users focused on
their task. Additionally, this interaction supports bi-manual
manipulation of a single axis as the user can position and ori-
ent an axis with one hand, and simultaneously adjust one of
the axis range or filter widgets with the other hand.

We implemented a “throw it away” metaphor to discard axes,
whereby a user grabs and throws the axis as they would a
crumpled piece of paper. This causes the axis to follow the
momentum of the throw and shrink to nothing.

Emergent Interactions
The affordances of VREs, coupled with our defined grammar,
provide the emergence of new interaction types that enable
novel multivariate exploration paths.

Axis Swipe – Dragging an axis across an array of axes or visu-
alisations results in the successive apparition and disappear-
ing of visualisations as defined by our grammar. This pro-
vides the user with a fluid and continuous method to quickly

(a) Interactive scaling of an axis

(b) Interactive filtering of an axis

Figure 8. Axes Interactions

explore the relationship between an axis and a set of other
axes or visualisations.

Brushing with Motion – Manipulating (even just wiggling) an
axis that is part of a composite visualisation causes the points
and/or lines that are associated with that axis to move propor-
tionally to the displacement of the axis. This causes these data
elements to perceptually “pop” relative to any other points or
clutter in the field of view. In our explorations we found this
to be a very useful feature, although this style of “brushing
with motion” [3] was not explicitly designed or coded. It sim-
ply emerged from the positional coupling of points to axes.

Parallel Plot Distortion – Graphic occlusion is a common
problem in Information Visualisation. For example, visual-
ising a dense PCP can result in clusters of line segments ob-
scuring other line segments, making the mental task of de-
lineating relationships difficult. ImAxes alleviates this issue
as users are able to directly manipulate axis within 3-space
and distort the associated visualisations, effectively twisting
PCPs to separate overlapping clustered line segments within
the visualisation. This is further enhanced through bi-manual
input and the stereoscopic nature of VREs, as the user can
manipulate both axes of the PCP and make even slight head
adjustments to better understand the presented relationships.

Fluid visualisation switching – ImAxes enables users to
switch between visualisation types using continuous hand and
arm gestures. E.g. holding two axes parallel and rotating
a wrist fluidly switches the visualisation between a parallel
plot and a scatterplot, providing the user agency in perceiving
the relationships between the two visualisations through one
continuous gesture.

Embodied Queries – We described earlier how entire 2- or
3-D plots or SPLOMs may be grabbed and used as brushes
against other plots or SPLOMs, simply by holding them close
enough that links appear between either the data points in the
two visualisations, or between the axes. By further restrict-
ing the set of data by filtering the axes and using the plot as
a brushing (or angel dusting) “wand” the object effectively
becomes a sophisticated embodied query tool.

Gallery/Workspace – In practical data analysis scenarios
(such as the one described in the next section) the user typi-



Figure 9. An example ImAxes workspace. We have found a useful work-
flow when exploring data is to construct a sequence of visualisations,
each covering a different aspect of the data. The user rotates his body
position to begin a new visualisation in a new space, while all the previ-
ous visualisations and the Attribute Shelf remain within easy reach.

cally creates a number of independent sets of data visuals as
they explore different data dimensions or particular subsets
of the data. They are free to place these anywhere in their
surroundings. We have noticed that in such scenarios users
tend to arrange them in a circular pattern such that the differ-
ent data visuals all remain within arms reach and the user can
shift their attention to a different visual simply by rotating in-
place. Thus, the space around them becomes a “workspace”
and they are able to arrange the visuals in an order that makes
sense to their analysis, Fig. 9. In presentation scenarios, the
workspace becomes a “gallery” through which they can guide
other users as they explain the results of their analysis.

TECHNICAL IMPLEMENTATION
ImAxes is developed in the Unity game engine and runs on
a Windows 10 PC with an Intel i7, and Nvidia GTX 1080.
We chose the Unity engine due to its support for VR de-
vices (Oculus VR, HTC Vive) and its support for rapid de-
velopment of complex interactive VRE applications. At a
high level, ImAxes is composed of a generalised visualisation
toolkit, axis and visualisation facet objects, and the grammar
recogniser.

We developed a generalised visualisation toolkit—the Immer-
sive Analytics Toolkit (IATK)—capable of building common
visualisations including histograms, PCPs, and scatterplots.
This toolkit is responsible for loading multivariate datasets,
reading dataset metadata, and generating the geometry to rep-
resent the visualisations. The IATK is intended to be appli-
cation agnostic and as such the visualisation geometry pro-
duced by IATK is generated in normalised model coordinates,
−0.5≤ x,y,z≤ 0.5. It is the responsibility of the implement-
ing application to project this visualisation geometry into the
required coordinate space.

The grammar recogniser is incorporated into the update cy-
cle of ImAxes as presented in Fig. 10. Every update cycle,
the ImAxes grammar recogniser is responsible for parsing the
spatial layout of axis tokens within the scene and creating or
destroying the appropriate visualisation facets based on the
grammar rules presented previously in this paper. These vi-
sualisation facets are composed of the geometry generated
by the IATK. Visualisation facets maintain references to their
constituent axes and are responsible for positioning and ori-

for each facet f1:
  for each facet f2:
    if |f1-f2| < threshold:
    enable link
        visualization

for each axis:
   recognize splom1
   recognize splom2
     …
   enable maximal
       symbols

Data AxisAxis Grammar 
Recognizer

User VR interactions

Visualisation
Facets

Visualisation
Facets

Linked 
Visualisations

Linked 
Visualisations

Figure 10. ImAxes system diagram showing the grammar recognition
process that occurs during the update cycle.

enting themselves relative to their axes. The facets use distor-
tion techniques to stretch and skew visualisations to fit within
their axes and to provide immediate, reactive feedback to the
user’s interactions. With this system design, expensive ge-
ometry generation algorithms are infrequently called, relying
on shader programs to manipulate, reproject, and even filter
the geometry. As a final process in the update cycle, ImAxes
calculates the Euclidian distance between each visualisation
facet and, when below a designated threshold, a linked visu-
alisation is created to connect the two facets visually.

USE CASE
In this section we provide a scenario that demonstrates the
use of ImAxes as a multivariate data visualisation tool. Luı́s,
a sommelier data scientist, wishes to perfect his knowledge
of vinho verde wines from Portugal. He has in his possession
a wine dataset from this region of the world [13]. The dataset
contains 6,497 samples of wine (1,600 red and 4,897 white).
Each wine sample is described by 12 data attributes (Fig. 11).

Overall, Luı́s wants to gain general knowledge of the differ-
ences between white and red wines of this region (goal 1),
and eventually understand the features that qualify wines as
mediocre or excellent (goal 2). The data contains a Quality
rank ranging from 0 (very bad) to 10 (excellent).

The sommelier sets up the color binding to pink for the red
wine data type and yellow for white wine data type in the
metadata control file of ImAxes . When ImAxes starts, he
views all the data attributes on the attribute shelf (Fig. 11).

Figure 11. When ImAxes starts Luı́s views all the data dimensions ar-
ranged in the attribute shelf.

Luı́s locates and grabs the type axis which contains the two
categorical values: white (1) and red (2).

Goal 1: Red versus White Wine Analysis
To gain a general overview of the differences between white
and red wines in the dataset, Luı́s swipes the type axis across
the shelf. As the axis is swept across the other data attributes,



temporary PCP visualisations appear and Luı́s views emerg-
ing patterns at a glance (Fig. 12).

Figure 12. As Luı́s swipes the Type axis across the attribute shelf, some
PCPs showing different spread of data may pop-up.

Swiping the attribute shelf and observing some emerging pat-
terns leads Luı́s to further investigate the Alcohol, Ph, Resid-
ual Sugars, and Sulphate axes. His primary interest is to per-
form pairwise comparisons between the Type and these four
axes.

For the first steps, Luı́s uses ImAxes to verify some initial
comparisons between red and white wines. Luı́s holds the
Type axis in his right hand, parallel to the Alcohol axis in
his left hand. A PCP is formed (Fig. 13, left) and by tilting
the axes back and forth, the effect of brushing with motion
makes clear the spread of alcohol values for both types of
wine. By examining the PCP, Luı́s notices a pattern indicat-
ing that the red wines have a higher alcohol concentration
than the white wines. Luı́s continues his investigation by in-
specting the acidity attribute denoted by the pH axis (Fig. 13,
right). He twists the PCP to resolve occlusion between the pH
values spread of the two wine types. The sommelier instantly
sees that the red wines from this wine region are less acidic
than white wines. Luı́s just confirmed his general knowledge
about degree of alcohol and acidity for red and white wines.

Figure 13. Visual exploration of Type against Alcohol and Ph.

Residual sugars can indicate an incomplete fermentation, or
that the winemaker added extra sugar to the wine. Luı́s wants
to refine his analysis and inspect the level of residual sugars
for both red and white vinho verde wines. He creates a 2D
scatterplot between Residual Sugar and Alcohol to observe
trends between the two types of wine. By scaling the x-axis,
Luı́s sees that the concentration of alcohol for white wines
decreases with the quantity of residual sugars. However, the

residual sugar level in red wines is constant with alcohol con-
centration (Fig. 14 (top left)).

Figure 14. Plot of Alcohol against Residual Sugar (top left). (Sulphate,
Ph) 2D scatterplot (top right). (Chlorides, Density) plot (bottom left),
extended with Alcohol (bottom right)

Luı́s has finished exploring familiar wine attributes. He is
now interested in exploring more combinations of attributes
that separate red wines and white wines.

Luı́s examines the pH and the Sulphates attributes. Through
bimanual manipulation of these two axes, a PCP is first
formed and then transformed dynamically into a 2D scatter-
plot. This (Ph,Sulphates) 2D scatterplot reveals a clear visual
pattern; two clusters emerge between red and white wine: red
wines have higher concentration of Sulphates and are more
alkaline (i.e. have a higher pH) than white wines (Fig. 14 (top
right)). Then, Luı́s wants to look for three-way relationships
between data attributes, starting with the creation of a 2D
scatterplot of Density and Chloride, producing another clear
cluster separation between the two wine types (Fig. 14, bot-
tom left). Luı́s extends this 2D scatterplot to a 3D scatterplot
by placing the Alcohol attribute on the depth axis (Fig. 14,
bottom right). By removing outliers, Luı́s observes a clear
separation between red and white. Luı́s hence understands
that these three attributes are determining factors that differ-
entiate red and white wines.

Goal 2: inspecting wine quality
Luı́s’ second goal is to inspect the ranking of good quality
red wines and what makes poor quality red wines from the
vinho verde region. To do so, he selects three attributes that
he is familiar with to determine wine quality, and wants to un-
derstand the interplay between them. He selects the alcohol,
Volatile acidity, and sulphates attributes from the shelf.

Luı́s assembles a 3D scatterplot with those attributes of in-
terest. He grabs the Quality axis and uses the PCP Brushing
interaction. However, the resulting connected visualisation
between the axis and the 3D scatterplot is too visually clut-
tered, so he restricts the filter to show only good wines. Luı́s
finds out that he can assemble the Quality axis with Type in
order to formulate his query: ‘I want to view the link between



the good red wines, and my 3D scatterplot’ (thus, he has cre-
ated an embodied query). This query allows him to filter out
low values on the Quality axis, and filter out white wines on
the Type axis. He creates a similar query visualisation for
poor quality red wines.

He uses these two visualisations as brushes on the 3D scat-
terplot (Fig. 15). The visual links (in blue on the figure to
improve print legibility) help him to understand that good red
wines have high degrees of alcohol and sulphates, but have
few volatile acidity. Conversely, bad red wines have less
concentrated alcohol, contain less sulphates and have more
volatile acidity.

Figure 15. A 3D scatterplot brushed by two 2D filtered scatterplots re-
veals the attributes of good and bad quality wine

This use-case illustrates the use of ImAxes in the context
of MDV, demonstrating the traditional visualisations and in-
teractions and the more advanced embodied query concept.
However, we recognise that this illustrative scenario cannot
be considered a case study and that in the future we acknowl-
edge that empirical validation of ImAxes is needed.

LIMITATIONS
Number of axes. Conceptually, the number of axes that a user
can reasonably handle and interact with is limited. Over this
limit, usability issues such as the need for the user to walk,
crouch or reach to access the axes may occur. For the sys-
tem to be scalable to extremely large and complex systems of
axes, some sort of semantic zoom would be required to allow
the user to expand and collapse subsets of axes to focus on
different levels of detail.

Number of data points. The size of the dataset is a common
factor that impacts the visualisation’s legibility and interac-
tion. ImAxes takes advantage of hardware graphics acceller-
ation through shader programs and efficient use of geometry
such that we can display tens-of-thousands of datapoints with
responsive rendering. However, the desire to explore even
larger data sets, and the ease with which many plots can be
composed with ImAxes means that both graphics system and
user-perception limitations can still be reached before long.
Semantic zoom would also help in this regard.

Interactive Visualisations. Our underlying Immersive Analyt-
ics Toolkit is at the moment limited to the presentation of table
data using histograms, 2D and 3D scatterplots, PCPs, and ba-
sic filtering and normalisation. We intend to refine the toolkit
to support more multidimensional, multivariate data such as
graphs, multimedia data and geovis data, and provide the user
with more control over the data binding to visual variables.

Automated analytics. ImAxes currently does not integrate au-
tomated presentation algorithms nor analytics tools as part of
the system. While we recognise that automation and statis-
tical algorithms play a major role in sensemaking, a balance
needs to be achieved between user interaction and system au-
tomation. In ImAxes, we made the decision to focus on user-
centric visual analytics by exploring fluid interaction in a 3D
VRE to explore multidimensional data in the VRE. The in-
teractions in this paper do not preclude the use of automation
but should be viewed as novel expressive methods to create,
brush and query visualisations.

Evaluation. As previously discussed, we consider it neces-
sary to conduct a comprehensive evaluation of ImAxes but
this validation must go beyond a Likert UX usability valida-
tion or base-line comparison. Because of the novelty of im-
mersive visualisations in VREs, established reference eval-
uation frameworks do not currently exist that we can build
upon. Only very recently have InfoVis researchers started
evaluating beyond the desktop visualisation such as Mixed
Reality [2], physical visualisations [28, 29] and proposing
increments of the standard models of InfoVis [27]. Conse-
quently, we believe that developing and using such a frame-
work that is theoretically sound would go beyond the scope
of this paper.

CONCLUSION AND FUTURE WORK
ImAxes is a multivariate data visualisation tool in a virtual
environment that provides highly fluid interaction through an
embodied axis metaphor. This is enabled by our declarative
spatial grammar which is expressive enough to capture a fam-
ily of known data visualisation idioms as well as to allow the
construction of visualisations that we have not seen before.
Furthermore, the fluid interaction that it supports, enables a
number of novel interactions. In particular, we find the way a
whole visualisation can become an embodied query tool that
can be applied to brush against other tools using the PCP links
to be both novel and compelling.

We are excited by the many directions for extending the
ImAxes concept. Obviously, it can be extended to other types
of visualisations such as time series or graph data. We would
like to explore adaptive bundling mechanisms to reduce link
clutter. More significantly, there are many possibilities for
collaborative data analysis. Compared to desktop systems,
the physicality of the VRE allows collaborating analysts to
use the usual physical social cues and behaviours, such as
gesticulation, passing, personal and shared spaces and so on,
to collaborate more naturally and effectively. For example,
one user can create an embodied query and hand it to another
user, for her to try brushing against a visualisation in her per-
sonal space.
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