
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 1

Graph Thumbnails: Identifying and Comparing
Multiple Graphs at a Glance

Vahan Yoghourdjian, Tim Dwyer, Karsten Klein, Kim Marriott, and Michael Wybrow

Abstract—We propose Graph Thumbnails, small icon-like visualisations of the high-level structure of network data. Graph Thumbnails
are designed to be legible in small multiples to support rapid browsing within large graph corpora. Compared to existing
graph-visualisation techniques our representation has several advantages: (1) the visualisation can be computed in linear time; (2) it is
canonical in the sense that isomorphic graphs will always have identical thumbnails; and (3) it provides precise information about the
graph structure. We report the results of two user studies. The first study compares Graph Thumbnails to node-link and matrix views for
identifying similar graphs. The second study investigates the comprehensibility of the different representations. We demonstrate the
usefulness of this representation for summarising the evolution of protein-protein interaction networks across a range of species.

Index Terms—network visualisation, circle packing, k-core decomposition, k-connected, network identification, large networks.

F

1 INTRODUCTION

MODERN graphics computing power makes it possible and
tempting to create visualisations that render individual

marks for each node and link in large network data. For example,
node-link diagrams are typically drawn with a circle or rectangle
mark for each node—possibly with a label—and a line for each link.
Further, it is a triumph of algorithm engineering that we now have
reasonably efficient methods for computing unfolded layouts of
diagrams with tens or hundreds of thousands of nodes in seconds or
minutes (e.g., [6], [32]). Such algorithms work quite well for sparse
tree-like or mesh structures, but on networks that have a scale-
free or small-world property the node-link diagrams can not be
untangled sufficiently to understand the connectivity—the infamous
“hair-ball” problem (e.g., Fig. 1(a)). Adjacency matrices are an
alternative representation that sidesteps the problem of tangled
edges by giving each edge a mark in its own matrix cell. However,
matrices become unreadable when there is a large number of nodes
as the rows and columns become too narrow (e.g., Fig. 1(b)).

Furthermore, not every visualisation task requires a level of
detail where every graph element is visible. Sometimes we just
want an overview of the large-scale structure of the network. Some
applications call for a quick comparative view of a large number of
networks, for example, when comparing the structure of networks
from different origins or when trying to understand the evolution
of a dynamically changing network.

The inspiration for the technique presented in this paper is that
force-directed layouts of large and reasonably dense networks tend
to look like vaguely circular blobs. Maybe it is possible to see that
the graph has several interlinked blobs. Maybe some denser cores
are visible within the blobs. But if, broadly speaking, that is all
you see after the effort of running a large-scale physics simulation
to untangle the network, can we not find a more efficient way to

• Vahan Yoghourdjian, Tim Dwyer, Kim Marriott, and Michael Wybrow are
with Monash University.
E-mail: vahan.yoghourdjian@monash.edu, Tim.Dwyer@monash.edu,
Kim.Marriott@Monash.edu, Michael.Wybrow@Monash.edu

• Karsten Klein is with the University of Konstanz, and is an adjunct research
fellow with Monash University.
E-mail: karsten.klein@uni-konstanz.de

Manuscript received August 26, 2017;

decompose the network into some hierarchical structure and then
visualise this hierarchy directly?

Most current decompositions and aggregations proposed for
large graph analysis are challenging both in their computational
complexity and interpretability, as—similar to the network layout
algorithms mentioned above—they are typically intended to allow
a detailed analysis of a single network. We are exploring how
far we can simplify computation and visualisation while still
retaining characteristic structural features that allow us to clearly
distinguish different networks over a large set, or to detect high-
level similarities.

The Graph Thumbnail representation explored in this paper
offers quick comparison and intuitive representation. It maintains
structural information and hierarchy and can act as an overview for
complex and large networks. A typical application—as we will see
in Section 7—would be to browse a set of large networks in order
to identify patterns across networks or to detect outlier networks.
Another obvious use for thumbnail representations of graphs is the
same way thumbnail representations are used in file explorers or
menu exploration: as an iconic view of a graph file that can easily
be found amongst a large collection.

Thus, to summarise, the visualisation tasks we consider are:
Identification: Quick identification of a network from a collection,
e.g., browsing through a directory full of graph files.
Comparison: Finding similarly structured networks from a collec-
tion, or alternatively finding outliers (i.e., dissimilar networks).
Overview: Quickly ascertain key structural information about the
overall network structure at a glance.

The main contributions of this paper are as follows:
1) We propose a novel Thumbnail representation for networks

(Fig. 1(c)) that:
• takes linear time in the number of edges of the network;
• always produces the same visual for a given input graph

structure—and hence is canonical in the sense that isomor-
phic graphs will always have identical thumbnails; and

• provides precise information about the graph structure in a
readable way.

2) We detail the design considerations and evolution of our
thumbnail design, both in terms of the choice of decomposition

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 2

(a) Force-directed node-link diagrams (b) Adjacency Matrices with overplotting

3273 15631 4038 37072

(c) Graph Thumbnails

Fig. 1. Three ways to represent the 70% and 90% confidence protein-protein interaction networks for E. coli. The graph shown on the left of each
subfigure has 3,273 nodes and 15,631 edges, while the graph on the right has 4,038 nodes and 37,072 edges.

used to obtain a representative hierarchy of the graph and the
visual elements of the thumbnails (Section 3).

3) We evaluate people’s ability to quickly judge the similarity
of different types of graph structure using thumbnails, node-
link and matrix representations of large graphs (Section 5)—in
support of Identification and Comparison tasks.

4) We evaluate people’s ability to read structural details about
graphs using these three representations (Section 6)—in support
of Overview tasks.

5) We explore a detailed application of Graph Thumbnails for
understanding a set of networks modelling protein-protein
interaction across different organisms and their growth (due
to biologists’ growing understanding) over time (Section 7)—
Comparison and Overview tasks.

2 BACKGROUND AND RELATED WORK

Most existing work on network visualisation has focused on
exploring detailed structure within a single network. However,
comparison has been mentioned (briefly) by Lee et al. [38]
in their task taxonomy for graph visualisation. Krzywinski et
al. [37] introduce hive plots which arrange nodes on radially
oriented axes according to their characteristics, but suffer from the
problem of scalability due to crossings of dense edge lines and
are computationally non-linear. Small-multiple visualisation has
been used before when comparing timesteps in dynamic graphs,
where the set of nodes in the graph is wholly or partially (if nodes
can appear and disappear) the same in each graph. For example
Burch and Weiskopf [13] use a small-multiple “edge splatting”
technique where the node positions do not change, but high-level
patterns in edge connectivity can be seen to change between graphs.
Similarly, Bach et al. [7] explored small-multiple visualisation
of dynamic brain activity networks, comparing experimental data
collected from a number of patients across time. Each network was
represented by a matrix view which was found to support the task
of weighted link comparison well. However, the networks were
small, modelling the relationships between only 30 or so brain
regions (nodes).

Thus, it seems most past work on network comparison has
focused on detailed comparison of individual changes in edge
weights or neighbourhoods. In general, we have found little past
work on visual techniques for comparing high-level network struc-
ture over large numbers of graphs and with arbitrary nodesets. Non-
visual analytical techniques have been developed for classifying
and determining structural similarity between sets of networks
(e.g., [40]) or to visualise sets of structural statistics across a
graph corpus (e.g., Kennedy et al. [35]—we use this “graph
landscape” information to classify the corpus of graphs used

in Study 1, Section 5). Kairam et al. [34] developed a visual
dashboard display of structural summary statistics for a network
(such as centrality metrics). Similarly Freire et al. [24] use a visual
dashboard display to act as an analysis tool for multiple networks.
However, understanding the display required a good understanding
of the metrics and the dashboard was proposed as a complementary
view to a node-link diagram.

To make visualisation scale to large networks without creating
overwhelming detail some sort of aggregation is necessary. For
node-link diagrams an obvious target for aggregation are the links,
being potentially far more numerous than nodes and causing clutter
through crossings. The link (edge) lines can be spatially [57] or
structurally [8] grouped and drawn as bundles. Cliques and bi-
partite cliques of nodes can be identified and their links implied
through aggregate connections [20], [21], [44]. Alternately, the
links can be omitted entirely and, instead, communities of highly-
linked nodes represented in contiguous coloured regions [25].
However, all of these techniques require complex algorithms with
running time greater than linear in the number of graph elements.

There are faster techniques for finding hierarchical decom-
positions of graphs. Major approaches include SPQR-trees for
the decomposition into triconnected components, in particular for
planar graph drawing [18], k-core decomposition [11], [26], [33]
or even simple stochastic sampling [42], [51]. Seidman introduced
the notion of a k-core [48] of a graph G, a maximal connected
induced subgraph H = (V ′,E ′) of G= (V,E) where V ⊂V ′,E ⊂ E ′

such that for the minimum degree δ (H) it holds δ (H) ≥ k. The
concept later was extended to weighted graphs [27], and further
generalised to so-called nuclei, which represent more complex
connectivity structures, but are also harder to intuitively interpret
[46]. k-core decompositions have been explored in the past as
a basis for layout of nodes in large and dense networks into
concentric circular “shells” [4] or 2.5-dimensional levels [12]
reflecting their coreness. In particular Alvarez et al. [4] identified
the utility of such drawings for so called “finger-printing” of large
graphs, implying that the “shells” of nodes formed a pattern that
was distinctive enough for gross structure identification purposes.
A number of works have used similar approaches, using various
decomposition techniques to emphasise high-level structure in large-
scale node-link visualisations. Archambault et al. [5] decompose
large graphs as far as bi-connected components before choosing
a layout algorithm most suitable for the structure of each of those
components. In each of the above methods, however, the full set of
nodes and edges is involved in the layout meaning that the visual
clutter is too great for small-multiples comparison. Very recent
work by Zhang et al. [56] has explored the use of a terrain metaphor
to visualise attributes associated with the nodes and the edges of a
graph. They consider various attributes in their examples, including

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 3

Fig. 2. A network where all the vertices are connected to each other.
The blue ellipse represents the 1-connected component. The green
one represents the 2-connected component. While the orange ellipse
represents the 3-core component. In this example one 1-connected
component contains all the vertices of the network. This network has
two 2-connected components within the same 1-connected component.
The orange ellipse is also 2-connected since our decomposition yields
a hierarchical tree. The sole 3-core component of this network can be
found by recursively removing all the vertices that have a degree of 0, 1,
and 2 consecutively (in steps, starting with 0 to k-1).

k-core depth. Their 3D renderings could be considered a hybrid of
our icicle and treemap representations.

3 DESIGN

Our concept for a “thumbnail” representation of a large graph that
supports identification, comparison and overview tasks has two key
elements: the hierarchical decomposition technique and the visual
representation of this hierarchy. In most regards it is possible to
separate these two concerns. As will be discussed, the semantics of
the decomposition used in the examples in this paper influence the
colour scheme of our visual design, but otherwise it is possible to
create a thumbnail view from any hierarchical decomposition. As
stated earlier, the particular decomposition explored here is chosen
for its linear running time and unambiguous (canonical) nature.

3.1 Hierarchical Graph Decomposition
We want each of the elements in our thumbnail network repre-
sentation to say something very concrete about the structure of
the graph. That is, a visual element of the thumbnail (such as a
circle) should correspond to a substructure in the graph that is
precisely definable. As a counter example, community detection
methods would fail this test since they typically seek to optimise a
non-convex function over the sets of nodes assigned to clusters. For
example, Girvan-Newman clustering [28] uses a greedy method to
attempt to maximise the modularity score of each cluster. We can
not really say anything concrete about a cluster hierarchy obtained
using this method because: a) it is likely only an approximation
of the maximal modularity cluster decomposition; b) even if an
optimum can be found it is likely not unique; c) a particular cluster’s
modularity is only defined relative to the rest of the graph structure.
Furthermore, modularity-maximising clustering methods are not
suitable for our purposes because even approximation methods for
the (otherwise NP-hard) optimisation problem trade off running
time with precision and even the fastest (and most imprecise)
remain super-linear. Clusterings obtained using random walks (e.g.,
[43]) have also become popular in recent times, but these also trade
off precision with running time.

An intuitive approach to finding dense substructures, which are
components of significant functional relevance in many application
areas like biology or the social sciences, would be to calculate a
hierarchy of k-connected subgraphs in the network, i.e., subgraphs
for which between each pair of vertices there are at least k vertex-
disjoint paths. Fig. 2 shows an example of a network where all the

vertices belong to the same 1-connected component. The network
also has two distinct 2-connected components, where one contains
three vertices, while the other four. So called, k-vertex-connected
components are also easily defined (explained) using Menger’s
theorem as maximal components in which at least k nodes must be
removed in order to split the component into 2 or more connected
components. However, a decomposition into k-vertex-connected
components (only) is not a practical approach for large graph
browsing for a number of reasons.

While k-vertex-connectivity of a graph for values of k up to
3 can be tested in linear time, and a graph can be decomposed
into so-called triconnected components in linear time ([17], [29]),
these components are not necessarily 3-connected, and extracting
3-connected components from them is not straightforward. To the
best of our knowledge there is no practical linear time algorithm
available to accomplish this.

In addition, the decomposition into k-connected components is
not unique for k ≥ 4, and thus it is not well-defined what the set
of k-connected components would be for general k. Consequently,
there is no canonical hierarchical decomposition for k-connectivity
known. A similar decomposition was described by Carmesin et al.
[14] only for so-called k-blocks, a concept based on the (k− 1)-
inseparability of the block within the original graph. This concept
is more difficult to interpret in practical applications, e.g., the nodes
do not even need to induce a connected subgraph, and there is also
no linear-time algorithm known to compute the decomposition. In
addition, it is not easy to make a comparison of similar structures
over a set of graphs based on their k-block structure.

By contrast, k-cores for k ≥ 3 are relatively straightforward,
canonical, and a full k-core decomposition can be computed in time
linear in the number of edges due to an algorithm by Batagelj and
Zavesnik [11]. A k-core of a graph is a component of the subgraph
found by repeatedly removing vertices that have degrees less than
k. Fig. 2 shows an example network with a 3-core subgraph.

In light of these concerns, our final choice of decomposition
(which we name a k-core-component clustering or KC3 decompo-
sition) for Graph Thumbnails is relatively simple:
• Level 1 is made up of singly-connected components.
• Level 2 consists of bi-connected components.
• Level 3 is 3-cores that are contained within a bi-connected

component.
• Levels 4 and up are k-cores (k ≥ 3).

Clearly, all bi-connected components are contained in singly-
connected components and all k-cores (k > 3) are contained in
(k−1)-cores. A challenge is that 3-cores are not strictly contained
in a bi-connected component. To enforce a strict hierarchy we begin
computing the core decomposition using bi-connected components
as starting points.

For Study 1 we used an earlier version of KC3 using tricon-
nected components (the R nodes of an SPQR decomposition) for
Level 3 and beginning the search for k-cores for Levels 4 and
up (k > 3) within these triconnected components. However, in
Study 2 we wanted the participants to be able to understand the
decomposition in order to make precise assessments of the graph
structure. We found people were confused by the definition of
triconnectivity and so we opted for the simpler definition above.

Figure 3 shows an example of applying this decomposition on
the popular network of Zachary’s Karate Club [55].

In summary, KC3 returns an intuitive, canonical and hierarchical
tree for the 1, 2-connected and k-core components of a network,
which can be computed in linear time.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 4

Fig. 3. Zachary’s Karate Club network [55], shown using node-link, matrix and Graph Thumbnail representations. The colours show the four levels of
the KC3 decomposition. This network is known for its two main communities: one around the administrator and a denser one around the instructor.
These communities are respected in the KC3 decomposition and can be clearly seen in the Graph Thumbnail representation.

3.2 Visual Design
As already mentioned, the inspiration for Graph Thumbnails was
to have a small visual, showing a minimum amount of detail but
with great precision, that is suggestive of a conventional large-scale
network visualisation. We can expand upon these requirements for
Graph Thumbnail visuals as follows:
R1 they be suggestive of a standard large-scale network visualisa-
tion technique;
R2 they be as readable as possible to support small-multiple
comparisons;
R3 the level in the cluster hierarchy of each visual element be
clear;
R4 the visual elements accurately convey the relative size of the
cluster to which they correspond;
R5 the representation should scale to arbitrarily large or dense
networks.

Beginning by considering R1, force-directed layouts such as
those in Fig. 1(a) suggest an arrangement of circles. Adjacency
matrices such as those in Fig. 1(b) suggest something more square,
such as a treemap. If we attribute less significance to R1, a third
option is to avoid the inaccuracy of area encoding and use a
mapping where the length of the visual elements precisely encodes
the size of clusters.

3.2.1 Treemaps
Treemaps over a cluster hierarchy have been considered before
by Muelder and Ma as a layout strategy for large graphs [19],
[41]. Their approach used the treemap slice-and-dice algorithm to
arrange the nodes inside nested rectangular regions corresponding
to the cluster hierarchy, then the full set of edges were overlaid
on the node arrangement. In the resulting visualisation the cluster
hierarchy is still evident, but the clutter due to edges meant that the
final rendering suffers from similar problems to large-scale force-
directed layout (i.e., the “hairball effect”). One possible thumbnail
design then, is simply to render the cluster-hierarchy treemap
without the edges (see Fig. 4(a)). Being space-filling, treemaps
arguably have the advantage that they maximise the “data ink”
and are thus efficient for small-multiple representations (R2). The
number of nodes involved in each element of the cluster hierarchy
is indicated by the area of the corresponding rectangular mark in
the treemap (R4).

3.2.2 Icicle Plots
It is well known in psychology [49] and reinforced by experimental
results in readability of information graphics [16], that encoding
a scalar value with area causes people to underestimate the true
value. Thus, we also considered icicle plots [36], which have the
advantage over treemaps of using a length encoding of the marks
to precisely indicate cluster size (R5). Also, depth of each cluster
in the hierarchy is precisely readable from the vertical position
of the marks (R4), while in the treemap we rely on the colour
encoding and rectangular containment to indicate hierarchy depth.
Unfortunately, we found that the minute features of icicle plots for
large graphs, such as can be seen in Fig. 4(b), became unreadable
when reduced to thumbnail size (-R2,-R5).

3.2.3 Circles
The third design option we considered involved a nested circle
packing, employing the algorithm proposed by Wang et al. [53].
While not completely filling the available rectangular area, like
a treemap or an icicle plot, a circle packing still gives a good
aspect ratio, a reasonable use of space (R2,R5) and uses circle
area to indicate the size of clusters (R4). In our piloting for
Study 1 we eventually settled on circle packing as the preferred
thumbnail design over treemaps, as we felt they convey a stronger
sense of hierarchy (R3) and also the empty areas at the corners
turned out to be useful gaps where we could place additional
adornments, described below. We preferred them over icicle plots
due to the aforementioned issue of scalability. The evaluation done
by McGuffin and Robert [39] shows that leaf nodes in nested circles
have a larger portion of the overall area than those in icicle plots.
They also show that nested circles have a better distribution of area
across the different levels of the tree than icicle plots.

Of the three thumbnail representations considered, the circle
packing is also arguably the most strongly reminiscent of a
conventional large-scale network visualisation, being suggestive of
the “blob” structure of a large-scale force-directed layout (R1).

3.2.4 Colour Scheme
Our colour scheme evolved between Study 1 and Study 2. The
original colour scheme used in Study 1 is shown in Fig. 7.
Essentially, we used a diverging palette with warm colours for

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 5

(a) Treemap (b) Icicle plot

3273 15631

(c) Graph Thumbnail

Fig. 4. Comparison of the three visual designs explored for Graph Thumbnails.

34 78

Circle Packing

Node Degree Distribution

4-core

2-connected

1-connected

Number of Nodes Number of Edges

Node distribution
relative to set

Edge distribution
relative to set

3-core

(a) Layout, annotations and adornments.

1-connected

2-connected

3-core

4-core

5-core

6-core

1-connected
2-connected

3-core
4-core
5-core
6-core
7-core
8-core
9-core
10-core
11-core
12-core
13-core
14-core
15-core

(b) Adaptive colour scheme.

Fig. 5. Graph Thumbnail visual design. We use the Pack function from
D3 [1], which uses nested circles to represent a hierarchy. The sizes of
the circles are representative of the number of nodes contained within
the respective component.

the single-, bi- and tri-connected components and cool colours for
the k-cores. The mid-colour (white) was chosen to align with the
special case of 4-core children of tri-connected components.

For the quick similarity task in Study 1 the participants only
saw each pair of thumbnails for three seconds at a time. Thus,
other than needing to provide good contrast the precise choice of
colour scheme was less significant for Study 1 than for Study 2,
the latter requiring much closer inspection to interpret structural
details. Also, as previously mentioned, for Study 2 we modified
the KC3 clustering to transition from bi-connected components to
k-cores at level 3. Thus, while piloting for Study 2 we tested a new
colour scheme that inverted the mapping of cool and warm colours.
Further, we opted to have distinct hues for the sparser clusters.
Thus, in our final colour scheme, singly connected components are
blue, bi-connected components are green, 3-core children of bi-
connected components are yellow and higher cores are interpolated
from red to dark brown. Thus, there is a clear mapping of warmth
of colour to density of connectivity within each cluster level.

One issue with colour selection is that there is a trade-off
between clear readability for the higher-level (sparser) clusters and
scalability to very dense graphs with many levels of cores. It is

also a trade-off between having a canonical colour scheme (the
same across all graph sets) and maximising the discriminability of
adjacent colours when the core hierarchy is very deep. Our solution
is to fix the colours for the first five levels, and then interpolate from
red to maroon in the LAB colour space for levels corresponding to
k-cores where k ≥ 6, as shown in Fig. 5(b).

In the examples in this paper we also use this colour scheme
for the elements of the node-link and matrix representations. That
is, we colour the nodes by their deepest cluster level membership
and the links by the deepest common cluster-level membership of
the two nodes each connects. These coloured node-link and matrix
representations were additional conditions in Study 2.

3.2.5 Annotations and Adornments

In several examples shown in this paper as well as the use-case
described in Section 7, the Graph Thumbnails were augmented
with additional annotations. Examples of these annotations are
detailed in Fig. 5(a). Note that these annotations and adornments
were not used in the studies where we were concerned with testing
the readability of the basic thumbnail design and comparing it with
standard node-link and matrix representations (which typically do
not use such adornments).

The size of a Graph Thumbnail is independent of the number
of nodes and edges in the network. This allows for matching
of networks with similar structural properties independent of
size. However, the absolute numbers of nodes and edges are key
identifying features of a network so we choose to add these numbers
as labels to the lower left and right corners of the thumbnail. When
a large set of graphs are being compared with small-multiples, it
can be useful to have a visual encoding of these numbers. Thus, we
add bars below these numbers where the length of the bar double
encodes the number of nodes/edges. Since Graph Thumbnails need
to display graphs with a wide variety of sizes, we choose to make
the lengths of these bars be relative to the set of graphs displayed
in a given small-multiples matrix, with the maximum length being
just less than half the width of the thumbnail. This allows relative
sizes of graphs within the set to be compared at a glance. Within the
node and edge count bars we further show the break-down of these
elements into the various clusters with colour bands corresponding
to the level-hierarchy colour scheme.

Node degree distribution is a method frequently used as a rough
profile of graph structure. We display an inverted histogram across

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 6

the top of the thumbnail where the height of each bar indicates
the number of nodes of a given node degree, with lower degree
nodes on the left. 0-degree nodes (if any) will be the left-most bar
and coloured grey. Within each bar, the membership of nodes of
different degrees to clusters is again indicated with coloured bands.
The right-most bar is a cumulative count of nodes of degree > 30.
This maximum prevents the bars from becoming too thin in very
large and dense graphs.

4 ALGORITHM SCALABILITY

The algorithm to create Graph Thumbnails has three stages.
1) Hierarchical Decomposition. This returns the different con-

nected and core components of the network as described in
Section 3.1. This takes linear time in the number of edges.

2) Canonical Encoding. In this stage of the algorithm, we
encode the nodes of the tree, which is acquired by the first
stage of the algorithm, in order to achieve a canonical ordering.
The canonical encoding of a tree can be computed in linear
time [31, Chapter 3].

3) Circle Packing. We use the D3 [1] implementation of the
circle packing algorithm proposed by Wang et al. [53]. The
positions of the circles are based on the canonical ordering
achieved in the previous stage. We use the standard JavaScript
sort which requires O(m logm) time, where m is the number
of components in the tree returned by the Hierarchical
Decomposition. However we could use the lexicographic
sort of strings of varying length instead, which takes O(m)
time [31, Chapter 3].

We conducted an experimental evaluation to verify that in
practice our algorithm for creating Graph Thumbnails takes linear
time in the number of edges.

We used a NetworkX [30] random graph generator based on the
Watts-Strogatz model to generate 25 small-world graph instances of
11 different orders (number of nodes) and three different densities.
The order of the graphs ranged from 50,000 to 300,000 nodes with
25,000 nodes added at each step. To obtain different graph densities
we set the number of edges to be a multiple of the number of nodes,
thus in Fig. 6 the number of edges increases linearly with respect
to the number of nodes. We used 2, 4 and 6 times the number of
nodes to decide the number of edges. We ended up with a total of
825 graphs.

The times reported in Fig. 6 are the complete times required to
create a Graph Thumbnail representation for each graph size. The
results clearly show the linear trend in running time with number of
edges. We were able to create Graph Thumbnail representation for
graphs with 50,000 nodes and 100,000 edges in 582 milliseconds,
graphs with 225,000 nodes and 1,350,000 edges in under five
seconds, and graphs of 300,000 nodes and 1,800,000 edges in 6.24
seconds.

5 STUDY 1: IDENTIFYING SIMILARITY

Our first study evaluated people’s ability to differentiate large
graphs with different structural properties using Graph Thumbnail
(GT), node-link (NL) and matrix (MX) representations. The study
aimed to show how much the three visual representations aided
the Identification and Comparison tasks. We chose to compare
against matrix and node-link views due to their wide use in practice,
which is not shared by the more novel techniques for aggregated
views identified in Section 2.

40K 60K 80K 100K 120K 140K 160K 180K 200K 220K 240K 260K 280K 300K

Number of Nodes

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
ve

ra
ge

 T
im

e
(s

)

Dens ity
6
4
2

Fig. 6. The average running time of creating Graph Thumbnails for large
graphs of different sizes. We were able to represent graphs with 300,000
nodes and 1,800,000 edges in approximately six seconds.

We came up with five different graph classes based on different
generating techniques. In general we focused on generators which
produce small-world and scale-free graphs as these arise frequently
in important application areas, such as Biology and Social Sciences.

The first C1, second C2 and fifth C5 classes were based on two
NetworkX [30] generators: Watts-Strogatz and ErdősRényi [47].

The Watts-Strogatz generator returns graphs with small-world
properties, such as short average path lengths and high clustering.
Whereas the ErdősRényi generator returns binomial graphs, which
have low clustering coefficients and do not have many hubs.

The parameters of Watts-Strogatz were changed to yield sparse
and dense graphs, giving the second and fifth classes respectively.

The third class C3 was based on the BarabásiAlbert model [10].
The BarabásiAlbert generator uses preferential attachment to return
scale-free graphs.

The fourth class C4 used a hybrid generator for clustered graphs.
It employed the BarabásiAlbert model to generate two subgraphs
and merged them by randomly adding edges between the low-
degree nodes of each. We generated two graphs from each of the
five graph classes, leading to the ten graphs shown in Fig. 7, each
with 1,000 nodes.

The NL stimuli were created using the force layout of D3.js.
[1] MX stimuli were created and ordered using Reorder.js with
barycenter reordering [23]. At first we found all but the diagonal
portions of the matrices were unreadable, since the individual cells
were smaller than a pixel when scaled to thumbnail size. Thus,
we increased the cell-size, allowing each filled cell to overplot its
adjacent eight cells. We feel this is a necessary modification for
any large-scale use of matrices in order for patterns and outliers to
remain visible.

5.1 Procedure
The study had 21 participants: 16 male, 5 female. The participants
were shown an explanatory statement. After agreeing to participate,
participants were asked questions about their background: how
often they saw network diagrams and how familiar they were with
the terms “cluster” and “connected components”. 7 participants
often came across network diagrams, 11 occasionally did, while
3 never did. 7 of the participants were familiar with the terms
cluster and connected components. In preparation for the task,
participants were shown a set of diagrams generated using the same
five generators used to produce the study stimuli. This was done to
give them an idea of the range of similarities or differences in the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 7

C2 - sparse Watts Strogatz C4 - clustered Barabási Albert C5- dense Watts StrogatzC3 - Barabási AlbertC1 - Erdős Rényi

G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

NL

GT

MX

Fig. 7. Study 1 stimuli. Ten graphs from five graph classes, shown in three visual representations: Graph Thumbnail , node-link and matrix.

diagrams of all three visual representations they were about to be
shown. There was no additional explanation or training questions—
we wanted participants to consider purely visual similarities rather
than have them try to interpret the visualisations.

We used a within-subjects design where participants were asked
to rate similarity of diagrams within all three visual representations:
GT, NL, and MX. Participants were shown pairs of diagrams from
the same visual representation side-by-side at the thumbnail size
of 300× 300 pixels. Each pair was displayed for three seconds
before they were hidden and the participant was asked to rate
their similarity on a five-point scale from “Similar” to “Different”.
Participants were shown each pair of diagrams twice (both left-right
orderings). The overall presentation order cycled between the three
different representations in random order.

The study was performed on site with a facilitator present. The
study was presented to the participant using a custom website
rendered by Google Chrome in full-screen mode on a 21-inch
monitor with 1680× 1050 pixel resolution. Participants were
entered into a random draw for an AUD$50 voucher.

5.2 Hypotheses
• H1 We hypothesised that large graphs shown using MX would

be more distinguishable than NL. Even though the relationships
between nodes is more direct in NL than MX. However the fact
that in MX they are assigned a non-overlapping pixel helps the
discrimination task.

• H2 Similarly we hypothesised that GT would allow large graphs
to become more distinguishable than when using NL or MX,
since GT is designed to show an overview and will have distinct,
non-overlapping and well packed circles.

5.3 Results
We collected 270 similarity ratings for each user, 90 for each visual
representation from all possible pairings of the 10 graphs excluding
comparison of a graph with itself 1. The graphs are divided into 5

1. The full results are published online at vahany.com/gt-study1-results.html

1.60

2.13

2.39
1.65

2.43

2.18

(a) NL

1.98

1.01

1.59

2.75
1.16

1.74

(b) MX

2.12
1.73

1.09
1.24

1.03

(c) GT

Fig. 8. Multi-dimensional scaling plot of the results of the first study. The
distances inversely represent the mean of the similarity rating for each
pair of graphs. The arrows show statistically significant differences in
discriminability between graph classes. The direction goes from higher
discriminability to lower.

classes, therefore the full matrix of scores is denoted S(CiGk,C jGl)
i, j ∈ {1, . . . ,5} k, l ∈ {1,2}.

Fig. 8 shows multidimensional scaling plots of the mean
similarity ratings between graphs for each visual representation.
The distances inversely represent similarity, so pairs of graphs
that participants considered more similar are closer together. The
plots suggest that GT and MX helped the participants identify the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 8

Fig. 9. A multi-dimensional scaling plot with distances representing dis-
similarity of 17 graph properties, computed using the Graph Landscape
method [35]. We can clearly identify the pairs of graphs generated with
the same methods, and the particularly large distance of the sparse
Watts-Strogatz graphs to the rest. Hue represents the graph class.

differences between graphs from different classes, since the dots
with different hues are placed far from each other. Similarly, we
notice that GT and MX helped identify the similarities of graphs
that belong to the same class, since the dots with similar hues are
placed close to each other. However, with NL, the participants
could not differentiate between the six graphs that belonged to
three different classes: C3, C5, and C1.

The significant differences in discriminability between the
classes, as indicated on the MDS plots by arrows, were determined
as follows. For each participant and visual representation, and a
given class Ci, we consider the rating provided by the participant
of CiG1 and CiG2 to selfsimilarity12(Ci). i.e.,

selfsimilarity12(Ci) = S(CiG1,CiG2) (1)

For each class Ci we consider each participant’s ability to
differentiate graphs in Ci from all graphs not in Ci, while using
each visual representation, with a discriminability score:

discriminability12(Ci) =

5

∑
j=1, j 6=i

(2

∑
k=1

2

∑
l=1

(selfsimilarity12(Ci)−S(CiGk,C jGl))

+(selfsimilarity12(Ci)−S(C jGk,CiGl))
)

(2)

Ranging over k and l considers the pairs of graphs from classes
other than Ci, shown in both normal and reverse order. For each
class Ci we have a second similarity rating selfsimilarity21 for the
graphs within Ci presented in reverse order, which gives us a second
discriminability measure discriminability21(Ci). The possible range
is −128 ≤ discriminability(Ci) ≤ 128, where 128 would occur if
a participant gave the pair within Ci a rating of 5 (the highest)
and gave all comparisons to other classes (C j 6=i) a rating of 1
(the lowest). In the reverse case discriminability(Ci) would be
−128, but in practice no participant had a negative score for any
representation.

Overall we had two scores for five pairs, three visual representa-
tions, and 21 participants. We analysed the results using the Kruskal-
Wallis test which showed that GT and MX had significantly higher
scores than NL (p-value = 0.001716). There was no significant
difference between GT and MX.

We also checked if any particular pair of graphs had a signifi-
cantly higher discriminability across the three visual representations.
To do this, we filtered the set of measures by different visual
representations, into three subsets. We ran the Kruskal-Wallis test
to check for significant differences between the measures across
the five similar pairs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GT

NL

MX

Fig. 10. 15 participants submitted a 5-star rating of how easy it was to do
the similarity tasks given each visual representation. More than 50% of
the participants rated GT on the easy side, while only 33.33% and less
than 30% of the participants thought MX and NL were easy respectively.

The arrows in Fig. 8 show the statistically significant differences
in discriminability between the five classes. The direction goes
from higher discriminability to lower and the label indicates ratio
of observed over critical difference found using the multiple
comparison test between different classes with p < .001 using
the Kruskal-Wallis test.

While using NL, the participants were able to discriminate the
class of sparse Watts-Strogatz graphs C2 and the clustered graphs
C4 more easily than the other three classes: C1, C3, and C5.

When using MX, The participants were able to differentiate
all classes better than the class of sparse Watts-Strogatz graphs
C2. They also had higher discriminability scores for the class of
clustered graphs C4, over all other classes, except the class of dense
Watts-Strogatz graphs C5.

With GT, the participants could identify the class of dense
Watts-Strogatz graphs C5 better than all classes except the class
of ErdősRényi graphs C1. They could also differentiate the class
of sparse Watts-Strogatz graphs C2 and the class of ErdősRényi
graphs C1 better than the class of BarabásiAlbert graphs C3.

To check for any learning effect we further partitioned the
results into three equal sets, for the position of pairs within the
entire set shown to each participant. We did not find any significant
differences in the results across different stages of the study.

We asked participants to provide post-study feedback. They
were asked to use a 5-star rating to express how easy it was to
perform the task using each visual representation. 15 participants
submitted feedback. Fig. 10 shows the results of the 5-star rating
of the post-study survey. More than 50% of respondents rated GT
as on the easy side versus only 33.33% for MX and less than 20%
for NL.

Participants were also asked to describe how each visual
representation helped them complete the similarity tasks. For NL,
three participants mentioned that size and shape helped, while four
mentioned density could be used to compare similarity. For MX,
five participants said they used the position, location or distribution
of dots, and 8 mentioned using the density or concentration for
determining similarity. For GT, five participants said they used the
circles, with five participants stating the circle nesting, hierarchy or
pattern helped with the task. Several participants also mentioned
either colour or sizes as a beneficial feature. Five participants
specifically stated the GT representation made the task easy.

5.4 Discussion

Analysis of the Study 1 results showed that both GT and MX
allowed significantly better discrimination of graphs from different
classes over NL, thus supporting H1 and partially supporting H2.
Even though the study showed no significant differences between
the results of GT and MX, the feedback from the participants
favoured GT over the two other visual representations.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 9

While single graph properties like diameter or average degree
are not well-suited to discriminate between classes of graphs,
combinations of such properties can be used for characterisation
and comparison of graphs. However, due to the diversity of
properties and the complexity of their interplay, it is hard to support
a good comparison at a glance. The graph landscape is a concept
for the visual analysis of graph structure that uses a large set of such
graph properties for in-depth analysis of graph set characteristics
and overlap [35]. An MDS map may be used to spot clusters
and outliers, as shown in Fig. 9 for the graphs of our study. The
ground truth here is that pairs of graphs that are generated with
the same method can be clearly identified, and the sparse Watts-
Strogatz graphs have the largest distance to the other graphs. We
would hope to see a similar landscape emerge from the similarity
ratings observed by participants. Indeed MDS plots of our analysis
of participant ratings of similarity in Fig. 8 do show a similar
landscape with the same features.
Limitations: The design of GT has evolved somewhat since Study
1. At the time, it had a different colour scheme and a different
structure as discussed in Section 3. However, since the rapid
similarity ranking task was based on very high-level features,
we expect the results to be repeatable with the new design.

The networks used in the study were each 1000 nodes. This
size was chosen as we found larger graphs unreadable with MX or
NL. The image size used in this study was 300×300 pixels. This
could be considered large for a “thumbnail” image. We believe that
at smaller scales, GT would still remain usable, while NL and MX
might not.

6 STUDY 2: UNDERSTANDING STRUCTURE

Study 1 did not require participants to interpret or understand the
visual representations, only to notice visual differences supporting
Identification and Comparison. We therefore performed a second
study to evaluate whether GT, NL and MX convey structural
properties sufficiently to support Overview tasks.

The study had four tasks using 12 different 20-node graphs,
randomly picked from the Rome Graphs corpus [2]. The graphs
were used unmodified for tasks 3 and 4. The first two tasks involved
finding 1- and 2-connected components. For these tasks, the number
of components in each graph was controlled by randomly adding
and removing links.

As in Study 1, we used GT, NL and MX to show the graphs. For
GT we used the final design colour scheme discussed in Section 3.
We had two variations of NL and MX: grey (NLGrey, MXGrey)
and coloured versions (NLColour, MXColour) using a similar
colour scheme as GT. For MXColour, if the nodes connected by an
edge belonged to different components of different levels, the cell
representing the edge would be coloured according to the higher
component.

6.1 Procedure

The participants were shown an explanatory statement. After
agreeing to this, they were asked questions on their background:
how often they saw network diagrams and how familiar they were
with the terms “cluster” and “connected components”. Participants
then worked through two tutorials [3] which explained the basics
of connectivity and presented the different visual representations.
Each task had several training questions which had to be answered
correctly before the participants could proceed.

(a) Task 1: 1-connected components (correct answer 2)

(b) Task 2: 2-connected components (correct answer 4)

Fig. 11. Sample stimuli from Study 2. Answers were multiple choice
(0 . . .6 or unsure).

6.1.1 Task 1
The participants were asked to count the 1-connected components
of a network. The networks were shown using NL, GT, MX,
MXColour, NLColour. In addition to the examples in Fig. 11(a),
the task included MXGrey and NLGrey diagrams. Piloting revealed
that extra training was required for MX. Participants were instructed
that in order for two nodes or blocks to be part of the same 1-
connected component, they needed to overlap with at least one
cell.
• H1.1 We hypothesised that participants would be faster, more

accurate and require less eye-movement while using GT than
with MX.

• H1.2 Similarly, we expected NL to be better than MX.
• H1.3 We also expected colour encoding to help MX and NL,

thus we hypothesised NLColour would be better than NLGrey.
• H1.4 Similarly, we expected MXColour to be better than

MXGrey.

6.1.2 Task 2
Counting 2-connected components. Again, extra training was
required for MX: participants were told that in order for two
nodes or blocks to be part of the same 2-connected component in
MX, they needed to overlap by at least two cells (see Fig. 11(b)).
The example also shows that the colouring alone is not enough,
since there might exist a bridge node between two 2-connected
components.
• H2.1 We hypothesised that GT would be better than MX.
• H2.2 Similarly, we expected that GT would be better than NL
• H2.3 We also hypothesised that NL would be better than MX.
• H2.4 Again, we expected NLColour to be better than NLGrey.
• H2.5 Similarly, we expected MXColour to be better than

MXGrey.

6.1.3 Task 3
Shown a pair of networks, participants had to pick the one with
more links. The networks were shown using all five representations.
• H3.1 We hypothesised MX would be better than NL.
• H3.2 Similarly, we expected MX to be better than GT. As

mentioned previously, GT did not include annotations for this

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 10

study (an edge count annotation would have made this task
trivial).

6.1.4 Task 4

In the final task, the participants were asked to match a given
reference graph shown using GT, MXGrey or MXColour to one of
three NLGrey graphs (Fig. 12).
• H4 Since GT elides detail, we hypothesised that MX would

outperform GT.

(a) MXColour reference graph (correct answer third NLGrey)

(b) GT reference graph (correct answer first NLGrey)

Fig. 12. Sample stimuli from Task 4 of Study 2. From the selection of
three NLGrey graphs, participants were required to select the one that
best matched the reference.

6.2 Setup

Tasks 1 and 2 had 10 training and 40 timed questions each. Task
3 had 3 training and 50 timed questions. Task 4: 6 training and
30 timed. A timeout of 10 seconds was applied for Tasks 1–3,
while Task 4 had a timeout of 30 seconds; after which the graphs
were hidden. The number of trials and the timeouts were decided
upon through pilot studies. All visual stimuli were shown an equal
number of times and their order was decided by latin square.

A Tobii pro x3-120 eye tracker was used throughout the study.
The study was run on a Windows 10 Dell Latitude E7440 laptop,
equipped with 2.7 GHz i7 processor and 8 GB RAM. It was shown
on a 22-inch HP monitor, using a Mozilla Firefox 47.0 browser. The
eye tracker was linked to the laptop through a Tobii pro external
processing unit.

We had 26 participants (eight of whom also participated in
the previous study): 19 male, 7 female; 22 aged 20–30, two aged
30–40, and two 40-50. Six participants stated that they often saw
network diagrams, 18 participants said that they occasionally saw
network diagrams, and two said that they had never seen network
diagrams before. 9 participants were not familiar with the terms
cluster and connected components, while 17 were.

6.3 Results
Tasks 1 and 2 each had 8 trials × 5 techniques × 26 participants
= 1040 trials. For Task 3, we had 10 trials × 5 techniques × 26
participants = 1300 trials, and for Task 4 there were 10 trials ×
3 techniques × 26 participants = 780 trials. In total we had 4160
trials across all four tasks. On average, the participants answered
81.5% of all questions correctly, 15.7% incorrectly, and 2.8% were
answered as “unsure”. “unsure” answers were counted incorrect
in the analysis. Unless specified otherwise, response times are for
correct answers. Eye movement was measured by calculating the
distance between two consecutive gaze points and summing them
for each visual stimuli, task and participant. Full results are shown
in Fig. 13.

The following results are statistically significant using the
Kruskal-Wallis test with p < .001.

In Task 1, results strongly support H1.1: participants had higher
speed and accuracy, and less eye movement when using GT
over MX. Results also strongly support H1.2: participants had
higher speed and accuracy, and less eye movement when using
NL over MX, except that the results did not show any significant
differences in accuracy between NL and MXColour. We did not
find any significant differences to support H1.3 and H1.4—colour
highlighting of component hierarchy in NL and MX were of little
benefit.

The results of Task 2 strongly support H2.1 (GT over MX) and
H2.3 favouring NL over MX; as well as H2.2 (GT over NL) for
speed and eye movement, but not for accuracy.

We did not find any support for H3.1 (MX over NL) and
H3.2 (MX over GT). On the contrary, the results showed that the
participants took less time overall when using GT and NLGrey
over MX, and NLColour over MXGrey. They also took less time
to perform correctly when using NLGrey over MXGrey.

The results did not support H4 (MX over GT). They did
show that GT outperformed MXGrey in both speed and accuracy.
They also showed that colour enhanced the speed and accuracy of
participants for MX.

To check for any learning effect we partitioned the trials into
three equal sets, for each task and each participant. We did not find
any significant differences in the results across the three sets.

6.4 Discussion
The results show participants performed equally well using GT and
NL on 1- and 2-connected component detection in Tasks 1 and 2,
while they struggled in accuracy, speed and eye-movement when
using MX. In Task 2, participants performed slower and moved
their eyes more while finding 2-connected components using NL
than GT.

There were no significant differences in accuracy across the
different stimuli for edge density estimation in Task 3. However, as
mentioned earlier, if we included the adornments of GT, it would
have been a simple task of reading and comparing the edge count
directly from the adornments. Furthermore, we were surprised to

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 11

0

2

4

6

8

MXGrey NLColour NLGreyGT MXColour

0

2

4

6

8

4

6

8

10

2

4

6

8

10

GT MXColour MXGrey

2

4

6

8

10

2

4

6

8

10

0

2

4

6

8

10

10

20

30

0

2

1

2

1

2

0

2

4

6

8

Ta
sk

 4
Ta

sk
 3

Ac
cu

ra
cy

Re
sp

on
se

 T
im

e

Ey
e

M
ov

em
en

t

Ta
sk

 2

Ta
sk

 1

Ta
sk

 4
Ta

sk
 3

Ta

sk
 2

Ta

sk
 1

Ta
sk

 4
Ta

sk
 3

Ta

sk
 2

Ta

sk
 1

GT MXColour MXGrey GT MXColour MXGrey

MXGrey NLColour NLGreyGT MXColour MXGrey NLColour NLGreyGT MXColour

NLColour
MXGrey

NLGrey

GT
MXColour

Fig. 13. Study 2 results. All three measures: accuracy on the left, response time (in seconds) in the middle, and total eye movement (in 0.1 megapixels)
on the right, show a similar trend where the participants performed better on Graph Thumbnails than matrix representations. They also performed
better on node-link diagrams than matrix representations.

find that both GT and NL aided the speed of the participants over
MX where edge-density should directly correspond to cell-density.
Another surprising result was that of GT outperforming MXGrey
in matching to NLGrey in Task 4.

Many participants said that the colour confused them when
applied to NL and MX, which was born out in our results in all
tasks except the matching in Task 4. Participants performed Task 4
better when using MXColour over MXGrey.

Generally, MX was outperformed by GT across all tasks. 10
participants expressed difficulties completing the tasks using MX
and the same number of participants said that performing the tasks
using GT was easy. Overall, we attribute this to GT removing the
detail of MX that was not directly necessary to complete each task.

Limitations: The study used only small graphs, with the size
chosen through piloting to make the tasks possible in limited
time using all three representations. The limiting factor was the
scalability of NL and MX representations, while GT scales with
less clutter as seen in Fig. 1 and Fig. 14.

We plan to further analyse the eye tracker data. It would be
interesting to find out where the participants fixated more on each
of the visual stimuli and if it changes across the different tasks. It
would also be interesting to find out if there are common tactics
that the participants used to perform the tasks.

7 USE CASE

We apply our approach to the analysis of protein-protein interaction
(PPI) data. Analysis of PPI is an important step to better understand
the complex mechanisms of life and diseases. Information about
suspected and confirmed PPI is collected in a number of databases.
Some of these only store manually curated data, while others also
store automatically derived information, e.g., from literature mining.
These databases grow over time, changing due to new evidence
arising from experiments. Many PPI databases allow download of
historical releases for comparison and to ensure that an analysis
takes into account the properties of the corresponding release.

PPI networks model proteins as nodes and interactions as edges.
There has long been debate on the structural properties of PPI
networks, including argument of scale-freeness, i.e., connectivity
distributed according to a power law [15], [50], small-worldness,
i.e., most nodes can be reached by most other nodes with only a
few hops, and relatively high local clustering compared to random
networks. As evidence for PPI can be derived from a multitude
of sources, including experiments or transfer from other species,
interactions can be highly dynamic. Hence, entries (edges) in PPI
databases are usually assigned probability or confidence scores,
due to the high rate of false negatives and false positives [52].

PPI networks are often represented as hairball node-link
diagrams, sometimes with the goal of showing complexity rather
than structure. Common force-directed layout methods are usually
unable to untangle such networks properly due to their small

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 12

Fig. 14. Evolution of DIP database structure for seven organisms (C. elegans, D. melanogaster, E. coli, H. sapiens, M. musculus, R. norvegicus,
S. cerevisiae), each row shows data for one organism (from top to bottom in the listed order). The two leftmost columns show the full DIP dataset for
the years 2008 and 2017, respectively. The remaining columns show the high-confidence core dataset (the most reliable subset of the interactions)
for the years 2008–2017 (Note that at the time of retrieval the full and the core data set for mouse and rat were the same for the years 2008 and 2017,
while the sizes given on the DIP web page differed).

diameter. Biologists have a need to compare networks (e.g.,
between individuals, species, or conditions, and to investigate
evolutionary changes), to gain an overview on the structural
characteristics, and to deduce molecular function. Thus, all three
of the visualisation tasks that we aim to support with Graph
Thumbnails are relevant for PPI analysis.

We downloaded both the most reliable core and full data sets
from the Database of Interacting Proteins (DIP) [45]—which
includes manually curated PPI data—for the years 2008–2017
for seven species (last release for each year), including several
model organisms which have long been the focus of scientific
research. Comparing those networks, both across species and across
years, can be supported by a representation with a focus on the
connectivity and hierarchical density, as those features show both
the basic structural characteristics of PPI and the change in the
coverage of those interactions by the database. We can compare the
required numbers of years and species using small-multiples (R2),
where each thumbnail will indicate a hierarchical structure (or
its absence due to the lack of confirmed evidence) that biologists
could also glean from force-directed layouts (R1). While ultimately
some “drill-down” facility is required to obtain information on the
properties of individual proteins and interactions, the depth of the
hierarchy and its components as well as their size allows analysts
to judge differences in the PPI networks due either to: database
updates over the years; differences in these updates depending on
the species; or general differences in the species’ networks (R3,R4).
As PPI knowledge is continually growing, a solution that supports

such a comparison also needs to scale to the large networks stored
in PPI databases (R5).

There are a wealth of publications using topological features
like degree distribution, clustering coefficient, and average shortest
path for characterisation and comparison of PPI networks. These
numbers alone can, however, vary for biologically-similar networks
or be very close for biologically-differing networks. In addition, it
is a tedious process to understand their interplay and to interpret the
impact of their combination for comparison purposes, in particular
for larger sets of networks. Proteins can also work together
in complexes, which might overlap and can be hierarchically
organised. These features will be difficult to detect in a standard
node-link diagram. We thus investigated the applicability of the
Graph Thumbnail representation for analysis of the evolution of
PPI networks for a range of species.

The Graph Thumbnail depiction of the DIP data is shown in
Fig. 14. It clearly shows the development of the connectivity in the
core set for most organisms, in contrast to the small changes in
the connectivity for the full set, where often a monolithic structure
is present from the earlier years on. We can also distinguish the
different levels of connectivity occurring in the different species in
the early years, where for the most interesting model organisms, in
particular S. cerevisiae, large structures with deep cores are already
visible, due to the state of research at the time. In addition, we
can clearly spot differences in development of different organisms,
depending on the amount of research put into the detection of PPI
over time, with strong activity for E. coli, H. sapiens, M. musculus,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 13

and with R. norvegicus having very low coherence. In contrast,
R. norvegicus’ core set comprises nearly the full dataset.

8 LIMITATIONS

One limitation that arises from the canonical characteristic of
Graph Thumbnails, is the fact that graphs with similar structure
but different content will result in similar Graph Thumbnail
representations. We feel that for graph browsing applications
canonicity is the more significant goal, since differences between
similar representations can be resolved through a more detailed
inspection—which, as mentioned previously, we are not trying to
replace. By contrast, differing representations of similar graphs
might lead to these similarities being missed entirely.

We base our studies on one representation while there are other
possibilities, some of which we mention in Section 3, however
we chose to test Graph Thumbnails based on our iterative design
process. We also use one clustering algorithm, while there exist
other possible ways. Nonetheless as we point out, the one we
chose has properties that made it favourable over many others; in
particular, canonicity and linear running time.

9 CONCLUSION AND FUTURE WORK

The Graph Thumbnail representation is not a replacement for
node-link and matrix representations which are clearly required
for detailed inspection of local structure. However, our results
show that in Identification, Comparison and Overview related tasks,
detail can be confusing and may be better served by a structural
overview such as provided by Graph Thumbnails. Generally, visual
comparison of high-level graph structure is understudied. The
approach of Study 1 is a step to fill this void. Our results indicate
that the Graph Thumbnail representation can allow humans to
identify graphs with various structures that are also differentiated
by the graph landscape metrics. Our first study showed that Graph
Thumbnails are at least as indicative of the network structure as
matrices and significantly better than node-link diagrams. With a
second study, we further evaluated Graph Thumbnails by asking the
participants to do certain Overview tasks, related to connectivity,
density and matching. The results showed that in most cases Graph
Thumbnails outperformed both matrices and node-link diagrams.

In future, we plan to experiment with circle packing algorithms
such that the layout can convey other aspects of graph structure.
Some possibilities for adjusting, e.g., scale and rotation of com-
ponents due to metrics, are relatively easy. More sophisticated
packing, such as trying to bring components closer together based
on their inter-connectivity, is also possible but the problem quickly
devolves into a similar level of complexity to force-directed layout.
Another possibility would be to obtain more fitted non-circular
cluster boundaries that more accurately convey the total cluster size
with area. Voronoi treemaps [9] might be a starting point for this.

Another obvious area to explore is interaction. For example,
hovering over a particular cluster in one thumbnail could highlight
the locations of similar nodes in thumbnails for other graphs in the
set or to use thumbnails to provide an overview in an interactive
graph browsing scenario such as [22]. For example, a smaller
neighbourhood of interest could be shown in a detailed high-quality
view (e.g. [54]), while the cluster memberships of the nodes in
the neighbourhood could be indicated through highlights in the
thumbnail overview.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council
Discovery Project grant DP140100077. We thank Jens Schmidt
and Markus Chimani for sharing their knowledge on graph
decompositions.

REFERENCES

[1] D3.js: http://d3js.org.
[2] Rome Graphs: http://www.graphdrawing.org/data/.
[3] Tutorial slides for Study 2: http://www.vahany.com/gt/study2/tutorial/.
[4] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani.

Large scale networks fingerprinting and visualization using the k-core
decomposition. Advances in neural information processing systems, 18:41,
2006.

[5] D. Archambault, T. Munzner, and D. Auber. Topolayout: Multilevel graph
layout by topological features. IEEE transactions on visualization and
computer graphics, 13(2), 2007.

[6] A. Arleo, W. Didimo, G. Liotta, and F. Montecchiani. A Distributed
Multilevel Force-Directed Algorithm, pages 3–17. Springer International
Publishing, Cham, 2016.

[7] B. Bach, N. Henry Riche, T. Dwyer, T. Madhyastha, J.-D. Fekete, and
T. Grabowski. Small MultiPiles: Piling time to explore temporal patterns
in dynamic networks. In Computer Graphics Forum, volume 34, pages
31–40. Wiley Online Library, 2015.

[8] B. Bach, N. Henry Riche, C. Hurter, K. Marriott, and T. Dwyer. Towards
unambiguous edge bundling: Investigating confluent drawings for network
visualization. IEEE Transactions on Visualization and Computer Graphics,
23(1):541–550, 2017.

[9] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi treemaps for the
visualization of software metrics. In Proceedings of the 2005 ACM
symposium on Software visualization, pages 165–172. ACM, 2005.

[10] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
science, 286(5439):509–512, 1999.

[11] V. Batagelj and M. Zaversnik. An O(m) algorithm for cores decomposition
of networks. arXiv preprint cs/0310049, 2003.

[12] M. Baur, U. Brandes, M. Gaertler, and D. Wagner. Drawing the as graph
in 2.5 dimensions. In International Symposium on Graph Drawing, pages
43–48. Springer, 2004.

[13] M. Burch and D. Weiskopf. A flip-book of edge-splatted small multiples
for visualizing dynamic graphs. In Proceedings of the 7th International
Symposium on Visual Information Communication and Interaction,
page 29. ACM, 2014.

[14] J. Carmesin, R. Diestel, M. Hamann, and F. Hundertmark. k-blocks: a
connectivity invariant for graphs. SIAM Journal on Discrete Mathematics,
28(4):1876–1891, 2014.

[15] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions
in empirical data. SIAM Rev., 51(4):661–703, Nov. 2009.

[16] W. S. Cleveland and R. McGill. Graphical perception: Theory, experimen-
tation, and application to the development of graphical methods. Journal
of the American statistical association, 79(387):531–554, 1984.

[17] G. Di Battista and R. Tamassia. Incremental planarity testing. In
Foundations of Computer Science, 1989., 30th Annual Symposium on,
pages 436–441. IEEE, 1989.

[18] G. Di Battista and R. Tamassia. On-line maintenance of triconnected
components with SPQR-trees. Algorithmica, 15(4):302–318, 1996.

[19] W. Didimo and F. Montecchiani. Fast layout computation of clustered
networks: Algorithmic advances and experimental analysis. Information
Sciences, 260:185–199, 2014.

[20] C. Dunne and B. Shneiderman. Motif simplification: improving network
visualization readability with fan, connector, and clique glyphs. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 3247–3256. ACM, 2013.

[21] T. Dwyer, N. Henry Riche, K. Marriott, and C. Mears. Edge compression
techniques for visualization of dense directed graphs. IEEE transactions
on visualization and computer graphics, 19(12):2596–2605, 2013.

[22] T. Dwyer, K. Marriott, F. Schreiber, P. Stuckey, M. Woodward, and
M. Wybrow. Exploration of networks using overview+ detail with
constraint-based cooperative layout. IEEE Transactions on Visualization
and Computer Graphics, 14(6):1293–1300, 2008.

[23] J.-D. Fekete. Reorder.js: A JavaScript library to reorder tables and
networks. In IEEE VIS 2015, 2015.

[24] M. Freire, C. Plaisant, B. Shneiderman, and J. Golbeck. Manynets: an
interface for multiple network analysis and visualization. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pages 213–222. ACM, 2010.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2018 14

[25] E. R. Gansner, Y. Hu, and S. Kobourov. Gmap: Visualizing graphs and
clusters as maps. In Visualization Symposium (PacificVis), 2010 IEEE
Pacific, pages 201–208. IEEE, 2010.

[26] C. Giatsidis, F. D. Malliaros, N. Tziortziotis, C. Dhanjal, E. Kiagias, D. M.
Thilikos, and M. Vazirgiannis. A k-core decomposition framework for
graph clustering. arXiv preprint arXiv:1607.02096, 2016.

[27] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. Evaluating cooperation
in communities with the k-core structure. In 2011 International
Conference on Advances in Social Networks Analysis and Mining, pages
87–93, July 2011.

[28] M. Girvan and M. E. Newman. Community structure in social and
biological networks. Proceedings of the national academy of sciences,
99(12):7821–7826, 2002.

[29] C. Gutwenger and P. Mutzel. A Linear Time Implementation of SPQR-
Trees, pages 77–90. Springer Berlin Heidelberg, Berlin, Heidelberg,
2001.

[30] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th Python
in Science Conference (SciPy2008), pages 11–15, Pasadena, CA USA,
Aug. 2008.

[31] J. E. Hopcroft, J. D. Ullman, and A. Aho. The design and analysis of
computer algorithms, 1975.

[32] Y. Hu and L. Shi. Visualizing large graphs. Wiley Interdisciplinary
Reviews: Computational Statistics, 7(2):115–136, 2015.

[33] H. Kabir and K. Madduri. Parallel k-core decomposition on multicore
platforms. In Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2017 IEEE International, pages 1482–1491. IEEE, 2017.

[34] S. Kairam, D. MacLean, M. Savva, and J. Heer. GraphPrism: compact
visualization of network structure. In Proceedings of the International
Working Conference on Advanced Visual Interfaces, pages 498–505. ACM,
2012.

[35] A. Kennedy, K. Klein, A. Nguyen, and F. Y. Wang. The graph landscape:
using visual analytics for graph set analysis. Journal of Visualization,
pages 1–16, 2016.

[36] J. B. Kruskal and J. M. Landwehr. Icicle plots: Better displays for
hierarchical clustering. The American Statistician, 37(2):162–168, 1983.

[37] M. Krzywinski, I. Birol, S. J. Jones, and M. A. Marra. Hive plotsrational
approach to visualizing networks. Briefings in bioinformatics, 13(5):627–
644, 2011.

[38] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry Riche. Task
taxonomy for graph visualization. In Proceedings of the 2006 AVI
workshop on BEyond time and errors: novel evaluation methods for
information visualization, pages 1–5. ACM, 2006.

[39] M. J. McGuffin and J.-M. Robert. Quantifying the space-efficiency of 2d
graphical representations of trees. Information Visualization, 9(2):115–
140, 2010.

[40] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A
versatile graph matching algorithm and its application to schema matching.
In Data Engineering, 2002. Proceedings. 18th International Conference
on, pages 117–128. IEEE, 2002.

[41] C. Muelder and K.-L. Ma. A treemap based method for rapid layout of
large graphs. In Visualization Symposium, 2008. PacificVIS’08. IEEE
Pacific, pages 231–238. IEEE, 2008.

[42] Q.-H. Nguyen, S. Hong, P. Eades, and A. Meidiana. Proxy graph: Visual
quality metrics of big graph sampling. Transactions on Visualization and
Computer Graphics, 2017.

[43] P. Pons and M. Latapy. Computing communities in large networks using
random walks. In International Symposium on Computer and Information
Sciences, pages 284–293. Springer, 2005.

[44] L. Royer, M. Reimann, B. Andreopoulos, and M. Schroeder. Unraveling
protein networks with power graph analysis. PLoS Comput Biol,
4(7):e1000108, 2008.

[45] L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and
D. Eisenberg. The database of interacting proteins: 2004 update. Nucleic
acids research, 32(suppl 1):D449–D451, 2004.

[46] A. E. Sariyuce, C. Seshadhri, A. Pinar, and U. V. Catalyurek. Finding
the hierarchy of dense subgraphs using nucleus decompositions. In
Proceedings of the 24th International Conference on World Wide Web,
WWW ’15, pages 927–937. ACM, 2015.

[47] D. A. Schult and P. Swart. Exploring network structure, dynamics, and
function using NetworkX. In Proceedings of the 7th Python in Science
Conferences (SciPy 2008), volume 2008, pages 11–16, 2008.

[48] S. B. Seidman. Network structure and minimum degree. Social Networks,
5(3):269 – 287, 1983.

[49] S. S. Stevens. On the psychophysical law. Psychological Review,
64(3):153–181, 1957.

[50] A. Thomas, R. Cannings, N. Monk, and C. Cannings. On the structure of
protein–protein interaction networks. Biochemical Society Transactions,
31(6):1491–1496, 2003.

[51] W. van Heeswijk, G. H. Fletcher, and M. Pechenizkiy. On structure
preserving sampling and approximate partitioning of graphs. In Proceed-
ings of the 31st Annual ACM Symposium on Applied Computing, pages
875–882. ACM, 2016.

[52] C. Von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields,
and P. Bork. Comparative assessment of large-scale data sets of protein–
protein interactions. Nature, 417(6887):399–403, 2002.

[53] W. Wang, H. Wang, G. Dai, and H. Wang. Visualization of large
hierarchical data by circle packing. In Proceedings of the SIGCHI
conference on Human Factors in computing systems, pages 517–520.
ACM, 2006.

[54] V. Yoghourdjian, T. Dwyer, G. Gange, S. Kieffer, K. Klein, and K. Marriott.
High-quality ultra-compact grid layout of grouped networks. IEEE
transactions on visualization and computer graphics, 22(1):339–348,
2016.

[55] W. W. Zachary. An information flow model for conflict and fission in
small groups. Journal of anthropological research, pages 452–473, 1977.

[56] Y. Zhang, Y. Wang, and S. Parthasarathy. Visualizing attributed graphs via
terrain metaphor. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1325–1334.
ACM, 2017.

[57] H. Zhou, P. Xu, X. Yuan, and H. Qu. Edge bundling in information
visualization. Tsinghua Science and Technology, 18(2):145–156, 2013.

Vahan Yoghourdjian is a PhD candidate at
Monash University, Australia, since 2014. His
main supervisor is Associate Professor Tim
Dwyer. His current research is in network visu-
alisation. He received his M.Sc. in Computer
Science from Notre Dame University, Lebanon,
in 2013. and B.Sc. in Computer Science from
Haigazian University, Lebanon, in 2009.

Tim Dwyer is an Associate Professor of Com-
puter Science with Monash University, Australia.
He joined Monash in 2012 as a Larkins Fellow.
His research is in the areas of network visuali-
sation, optimisation and immersive analytics. He
has also worked for Microsoft, USA—researching
and developing tools for software visualisation in
the Visual Studio IDE. He received his PhD from
the University of Sydney in 2005.

Karsten Klein is a Postdoctoral Research Fellow
at the University of Konstanz, Germany. His
research is in the areas of visual analytics ap-
proaches for complex data from application areas,
in particular from the life sciences, and on net-
work analysis and graph drawing algorithms. He
received his PhD from TU Dortmund, Germany
in 2011.

Kim Marriott is a Professor in Computer Science
at Monash University, Australia. His research is
in data visualisation, human-in-the-loop analytics,
assistive technologies and immersive analytics.
After obtaining his PhD from the University of
Melbourne in 1989 he worked at the IBM TJ
Watson Research Center until joining Monash
in 1993.

Michael Wybrow is a Senior Lecturer in Com-
puter Science at Monash University, Australia.
His research is in the areas of constraint-based
network layout, information visualisation, human-
computer interaction, and connector routing. He
likes practical problems and has worked on a
number of industry-sponsored research projects.
He received his PhD from Monash University in
2008.

