An Evaluation of Perceptually Complementary Views for Multivariate Data
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Figure 1: Samples of stimuli used in our Study. Side-by-side PCP and SPLOM with two difficulty levels: easy (a) and difficult
(b). A multiple-selection filtering is applied on (a). Multiple SPLOM points and PCP lines corresponding to a single data item are
highlighted in (b); Here, participants were required to find the candidate with the best average mark in over 100-200 candidates.

ABSTRACT

We evaluate the relative merits of three techniques for visualising
multivariate data: parallel coordinates; scatterplot matrix; and a side-
by-side, coordinated combination of these views. In particular we
report on: (1) the most effective visual encoding of multivariate data
for each of the six common tasks considered; (2) common strategies
that our participants used when the two views were combined based
on eye-tracking data analysis; (3) the finding that these views are
perceptually complementary in the sense that they both show the
same information, but with different and complementary support
for different types of analysis. For the combined view, our studies
show that there is a perceptually complementary effect in terms of
significantly improved accuracy for certain tasks, but that there is a
small cost in terms of slightly longer completion time than the faster
of the two techniques alone. Eye-movement data shows that for
many tasks participants were able to swiftly switch their strategies
after trying both in the training phase.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Evaluation/Methodology

1 INTRODUCTION

Visualising high-dimensional data is a significant challenge for data
visualisation designers and researchers as it tests the limits of human
perception and cognition. Yet, with increasingly automated collec-
tion of data in almost every domain and hence ever more complex
high-dimensional data becoming available, so too, effective visuali-
sation and analysis tools become ever more important [23]. A single
traditional visualisation idiom such as the humble scatterplot can
effectively convey two data dimensions spatially. Colour or other
visual channels can extend this to three or more data dimensions,
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though with less saliency than spatial mappings [8]. Beyond a cer-
tain degree of dimensionality (perhaps tens of dimensions) it may be
essential to automatically select an interesting subset of dimensions,
e.g. projection pursuit [16] or to rely on algorithmic techniques to
reduce the dimensionality of the data, i.e. multidimensional scal-
ing [4]. However, multidimensional scaling necessitates a loss of
information in the projected view and the human analyst loses their
direct connection to the underlying data.

There are, however, visualisation techniques that can map several
(more than three but probably less than ten) data dimensions spatially
without loss of information. Probably the most widely used of
these techniques are scatterplot matrices (SPLOMs) [7] and Parallel
Coordinate Plots (PCPs) [17].

Traditionally, scatterplots render two data-dimensions to orthog-
onal x and y axes. SPLOMs are a fairly logical extension of the
traditional scatterplot to n data dimensions, by using small multi-
ples of scatterplots to represent the full set of n x n pairs of data
dimensions. PCPs use n axes arranged in a parallel sequence, us-
ing a polyline for each data point such that the data value in each
dimension is indicated by the point at which the line crosses the cor-
responding axis. These two alternative techniques for multivariate
data visualisation each have their own advantages and disadvantages,
as explored in various studies described in detail in Section 2. Some
of the more obvious problems for each technique can be summarised
as follows:

SPLOM

* Scatter plot matrices require screen area proportional to the square
of the number of dimensions.

¢ A single data element is represented by n x n points (one in each
plot). Finding the points corresponding to a given data element
necessitates interactive techniques such as brushing.

PCP

 Data distributions, correlations or other differences and similari-
ties can only be easily compared on adjacent sets of axes.
¢ The lines connecting data points across axes can lead to significant

clutter, especially when data dimensions are not well correlated
causing the lines to cross in many places.



* While scatterplots an idiom encountered by most people in grade-

school math classes, PCP is arguably less familiar to most people.
Which of the two techniques is better depends greatly on the particu-
lar analysis task. To overcome the disadvantages of the individual
techniques, various hybrid designs have been proposed to combine
the two different techniques into a single display. Typically, this re-
quires quite sophisticated visual and interaction design that requires
further training for users to use and interpret effectively. This paper
evaluates a different, and arguably more straightforward approach
to combining SPLOM and PCP visualisations into a single display
that—to the authors’ knowledge—has not been evaluated before.
That is, simply placing PCP and SPLOM views side by side. Our
study seeks to answer the question of whether users are able to easily
switch between the two views in order to use the one most suited to
the analysis task at hand. We do this by evaluating three conditions:
parallel coordinates view only; scatterplot view only; and the two vi-
sualisations side-by-side. Our hypothesis is that speed and accuracy
of participants completing different tasks using the combined view
will be similar to the speed and accuracy of the better performing
individual technique for the given task.

Our work in this area is motivated by a recent study evaluating
the notion of perceptually complementary network visualisation by
Chang et al. [5]. That work compared individual matrix and nodelink
visualisations of networks against their side-by-side combination.
Despite the two views being redundant in terms of both presenting
the same information they found clear benefits to the combined view,
as we discuss further in Section 2.

We ascribe this effect to the chosen pairings of network visuali-
sations each supporting visual comprehension of different aspects
of the data despite the two views being redundant in the sense that
each on its own was sufficient—though perhaps not optimal—to
complete the task.

Perceptually complementary visualisations are differentiated from
a more common class of multiview displays that seek to show dif-
ferent subsets of data properties or data elements in each view. This
latter class are called informationally complementary since each
shows a different subset of the available information.

In this paper, we test if this principle of perceptual complemen-
tarity carries over to combined SPLOM and PCP views. In investi-
gating perceptually complementary views on multivariate data we
try to understand the following questions:

Q1: Which tasks are better supported by PCP or SPLOM?

Q2: Are there any advantages for Combined views when solving
complex tasks?

Q3: Are people aware of the merits of different views? If so, what
are their strategies to solve tasks.

The work presented in this paper may be beneficial to users in
two distinct ways: first, our work shows that there is a perceptually
complementary effect in terms of improved accuracy for some tasks;
and second, eye-tracking data shows that in the combined condition,
for almost all tasks, participants chose the more effective of the two
views even without realising that they were doing so. In summary,
our main contribution is an interactive Combined approach to visu-
alise multivariate data with a complementary effect. The detailed
contributions are that we:

* present a combined PCP and SPLOM view with novel interactions
such as coordinated dragging of PCP axes and SPLOM cells;

» conduct a controlled study for six multivariate data analysis tasks;

categorise the identified use strategies based on eye-tracking data;

analyse the performance of PCP and SPLOM for six identified
tasks;

¢ show how the six common tasks are supported by the effect of
complementariness in the Combined view and what are the popu-
lar strategies used by participants.
The paper is organised as follows: after reviewing related work

in Section 2, we present our design in Section 3. The user study
is presented in Section 4. Finally, we analysed and discuss further
results in Section 5 and draw conclusions in Section 6.

2 RELATED WORK

In this brief review, we focus on three subjects: previous work in the
area of coordinated and complementary views for multivariate data
visualisation (Section 2.1); empirical studies examining the visuali-
sation of multivariate data (Section 2.2); and previous work that tries
to combine aspects of PCP and SPLOM into hybrid visualisation
systems (Section 2.3).

2.1 Coordinated and Complementary views

Multiple view systems with coordinated interactions allowing users
to explore various aspects of a dataset have ascended from a main-
stay topic in information visualisation research (e.g. [29]), to fairly
standard practice in commercially available tools. For example, pop-
ular software tools like Tableau and Microsoft PowerBI allow people
to create sophisticated tiled display dashboards, to filter the data in-
teractively and view different attributes of the data using different
standard visualisation techniques.

It would be fair to say that standard practice when creating mul-
tiview data displays is to choose sets of displays that are informa-
tionally complementary, in the sense that they show different sets
of data items (such as an aggregated overview and a view of some
subset of data showing more detail) or different sets of attributes
(such as the side-by-side displays of timing and accuracy data that
we have used to present our experimental results in this paper).

A less standard approach—and one argued by Chang et al. [5] to
be undervalued in some situations—is to choose pairings of views
that show the same data and the same attributes but in perceptually
complementary ways. In their studies, Chang et al. tested analysis
tasks for static and dynamic network (event sequence) data. Their
paired views were an adjacency matrix and a node-link diagram
for static data, and tiled matrix and Sankey diagrams for the event
sequence data. Both views showed the full set of weighted edges, ei-
ther through glyphs in matrix cells or link lines of varying thickness.
However, as earlier network visualisation studies have indicated,
these two views are markedly better for different types of tasks.
That is, the matrix view is better when a precise comparison of link
weight is necessary, and the node-link view is better for path follow-
ing tasks [13]. Experimental results showed that most participants
were able to use the two displays together in an effective way, such
that the results of the combined views were at least as accurate as
the best individual view for each task, and performance was only
slightly slower.

This result is not completely unexpected, in fact it is predicted
by results in perceptual psychology. For example, the so called
“representational effect” described by Zhang and Norman [39] says
that the same information shown in different ways may lead to dif-
ferent understanding. Within a single visualisation, it is also well
known from visualisation research that redundant encodings within
a single visualisation may improve readability [26]. However, to
our knowledge, the Chang et al. study of network data visualisation
was the first time that entire isomorphic displays (complementary
visualisations) have been studied explicitly in the context of infor-
mation visualisation. It raises two important questions prompting
the study presented in this paper. First, can these results for network
data visualisation be generalised to other data visualisation pairings?
Second, the information visualisation research community has a long
tradition of developing complex hybrid visualisation techniques such
as those described for multivariate data in Section 2.3, but do we
need to pay more attention to simple coordinated pairings?



2.2 Empirical evaluation of PCP and SPLOM

There have been many studies evaluating PCP and SPLOM tech-
niques in isolation, but few that compare them directly, and none we
are aware of that evaluate a side-by-side combination of the two. Jo-
hansson and Forsell [18] made a recent survey of evaluations of PCP
and related techniques. Of the many studies surveyed, most relevant
to this paper is one by Li et al. [22] comparing single scatterplots
with PCP displays of 2 axes (only). In particular, they found that
participants were better at accurately assessing degree of correlation
between pairs of data dimensions with the scatterplot than with the
PCP. The displayed stimuli were not interactive and the scatterplots
and PCP were shown in isolation (a combined view was not tested).

Another study by Kanjanabose et al. [19] compares user perfor-
mance, in terms of accuracy and response time, in the context of
four different visualization tasks, using either PCP or SPLOM (but,
again, not both together). Their results suggest that PCP is better
than SPLOM for cluster, outlier and change detection.

A radial version of PCP called Stardinates was empirically tested
against regular PCPs by Lanzenberger [21] - including a combina-
tion. The two views are very similar to one another (more similar
than PCP and SPLOM), and hence, not particularly complementary.
Thus, the result that few differences were found was not surprising
although some benefit was claimed for the combined view.

2.3 Hybrid Scatterplot and Parallel Coordinates Visuali-
sations

Many have identified similarities and complementary aspects of
PCP and SPLOM displays of multivariate data. The visual saliency
of scatter plots has long been considered by statisticians and others
interested in data analysis. A classic paper by Tukey and Tukey [33]
introduced metrics that they called scagnostics, for identifying no-
table structures in scatterplots. Wilkinson et al. [36] used scagnostics
to analyse and order SPLOMs. Dasgupta et al. [10] extended this
notion to PCP naming the equivalent metrics pargnostics. They
also introduced the presentation of pairs of parallel coordinates axes
in a matrix. Heinrich et al. [15] noted that such a complete PCP
matrix, must introduce discontinuities in the line segments. So
they introduced an alternate Parallel Coordinates Matrix (PCM) that
presents a linear sequence of all pairs of axes. No controlled study
was performed.

Siirtola [31] combined parallel coordinates with a tabular view
to provide an informationally complementary overview and detail
display. Note that the tabular view was not a scatterplot, rather
each column was used to display individual attribute values for
each underlying data item. The two views were coordinated such
that interactions affected both views through selection brushing or
reordering of dimensions. They performed an experiment comparing
task effectiveness with and without linked interactions (both views
were displayed at all times).

Yuan et al. [38] propose a parallel coordinates design which al-
lowed users to interactively introduce points between two PCP axes
at horizontal positions according to a third data dimension. Claessen
and van Wijk [6] created an interactive tool for creating hybrid
scatterplot and parallel coordinate displays, such that the axes of
scatterplots could be extended in either direction into linked parallel
coordinates axes. Cordeil et al. [9] have recently extended this con-
cept to 3D in VR. Engelke et al. [12] presented a study on the visual
assessment of relative data point distance in PCP and SPLOM in
Catesian coordinate systems. Viau et al. [34] presented three novel
and sophisticated approaches for achieving a tighter integration of
PCP and SPLOM views through hybrid techniques for multidimen-
sional visualization, sophisticated selection and morphing layout.
While each of the above papers consider case studies, none of these
hybrid systems have received controlled empirical user studies.

3 VISUAL AND INTERACTION DESIGN

For our study (described in Section 4) we are interested in measuring
the effectiveness of PCP, SPLOM, and a Combined side-by-side
representation of both PCP and SPLOM for multivariate data. For
canonicity we used fairly standard visual designs for each of the
techniques, as follows:
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Figure 2: Re-ordering axes in Combined view. Step 1: User initiate
dragging by clicking top handle of PCP or left (or bottom) handle in
SPLOM, the selected axis/column are responsive and the counterpart
elements on the other view turn to green. Step 2: User drag selected
axis/column to desired location. In PCP, axis switch simultaneously
during the dragging while in SPLOM, matrices are only reordered
when user finish dragging. Step 3: User release the mouse and
both views updated. SPLOM rows, columns, and cells updated with
animated transition.

PCP Each data item is encoded as a connected polyline and the
attributes as the intersection points of these lines with the axes
(see Figure 1 (a) (left)). The polylines in PCP give primacy to
individual data points and their data values across dimensions.
Labels name the data dimensions of the axes and also the data
ranges.



SPLOM We use the empty cells on the diagonal of the
SPLOM (where, otherwise, each dimension would be plotted
against itself) for the dimension labels. Data ranges are la-
belled at the left and bottom edges of the SPLOM (see Fig-
ure 1 (a)(right)).

Combined The PCP and SPLOM views were presented side-by-
side, coordinated through brushing-and-linking as described
below. (see Figure 1 (a)).

Our Combined view is intended to combine the advantages of
both SPLOM and PCP. Interaction techniques can enhance the
user’s perception of information when visually exploring a dataset
and reduce the drawbacks of the individual techniques—particularly
those related to visual clutter and object overlap—providing the user
with mechanisms for handling complexity in larger datasets [11].
The following list shows the interaction features we implemented
on the combined views.

Item Identification In piloting different tasks for our study we
found that interaction was essential to allow users to isolate and
identify individual data items or to restrict the display to groups of
data items. On mouse-hover, individual data lines (PCP view) and
points (SPLOM view) are highlighted across all plots/axes, and their
labels displayed near the mouse cursor.

Range filtering In order to limit line clutter PCP view must allow
the user to filter the displayed data lines by data attribute ranges.
This is achieved in PCP by allowing the user to select a section
of an axis through mouse dragging [32]. Multiple selections on
multiple axes are applied together, such that only data elements
with lines passing through all the selected regions are highlighted.
In the SPLOM view lasso select highlights data points within the
rectangular selection across all plots [37]. Thus, SPLOM allows the
user to filter in two data dimensions simultaneously.
Combined-view Brushing In coordinated-multiview displays it is
fairly standard that items selected in one view are also highlighted
across all other views — an interaction commonly known as brushing.
In our combined PCP-SPLOM view, brushing is used such that when
lines in the PCP view are selected or hovered-over, the points for
the corresponding data items are also highlighted in the SPLOM
view. Conversely, selections or hovers in the SPLOM view are also
highlighted in the PCP view. Coordinated brushing of selections
and individual points is shown in Figures 1 (a) and (b), respectively.
Axes and Matrix Reordering In PCP display, it is difficult to de-
termine if a pair of data dimensions are strongly correlated unless
the corresponding axes are adjacent. Thus, interactive reordering
of axes by direct drag and drop is a fairly standard interaction for
PCP systems [3]. Less standard is interactive reordering of SPLOM
displays — indeed we are not aware of any visualisation systems that
currently implement this feature over a SPLOM. However, to keep
the two views coordinated during reordering of PCP axes, it was
essential to allow reordering of the SPLOM, and furthermore, to
ensure that interaction was reciprocal across both displays. That is,
for symmetry, we felt it was important to allow the user to initiate
a reordering of both views by dragging an individual cell in the
SPLOM. Figure 2 illustrates this reordering interaction. To reinforce
the coupling, both views are updated smoothly and simultaneously
throughout the drag operation, regardless of in which view the re-
ordering was initiated. Please see our video to see this effect in
action.

4 STUDY
4.1 Hypotheses and Tasks

Based on our research questions stated in the introduction, we for-
mulated the following hypotheses:

* Hy: There is no difference in time and error across techniques,
for each task (null-hypothesis).

* H,eraii: Combined will be at least as accurate as the best of
the two individual techniques PCP and SPLOM.

We identified six generic tasks that require participants to access
the data at different levels of detail: from a single observation point
to detecting patterns in large subsets of the data. There are many
tasks that could be tested. The six tasks we have chosen for this study
are based on past work in parallel coordinate and scatterplot matrix
evaluation [2,19,24,27,28]. These tasks were also identified within
the ten low-level analysis tasks that are important within information
visualization [1]. The tasks were couched to the study participants
in terms of a dataset giving student names and their marks in five
subjects. The tasks and the expected relative difficulty of answering
using PCP and SPLOM are:

Best-Performer: Which student has the best average mark? This
task translates into finding the best performer from 100+ students.
The target student is the best overall score. In PCP, participants
had to search for the top students in each subject and quickly read
their values and make an estimation of average mark. In SPLOM,
participants had to find the data point at the top right corner of certain
dimensions while comparing values in dimensions that represent
four subjects. In Combined, we hypothesised that some participants
would set a filter on the PCP view and confirm the values across all
dimensions in the SPLOM view.

Subset-Tracing: What is the name of the student of age 22 and
whose mark in Science is lower than or equal to 75 and who has
the best Math score? This task translates into finding the candidate
who satisfies the three given conditions and requires participants to
be able to follow some points over several axes in the plot and also
to read the value for specific points. In PCP, participants had to set
filters on both Science and Age dimensions, then follow the lines
across all other dimensions. In SPLOM, participants had to set a
filter on Science in one of the plots, and then locate the best math
candidate in the Age versus Math plot. In Combined, we expected
participants to obtain an accurate answer from SPLOM but to set
filter on PCP because its selection brush is much easier and more
accurate to operate (i.e. the vertical axes in PCP present a larger
target area for interaction than the plot areas in SPLOM).
Object-Comparison: Over all subjects (Sci, Tech, Eng, Math) which
highlighted student had most similar average score to the student
highlighted in blue? This task offered three candidate students
highlighted in yellow and one target student highlighted in blue.
Participants had to estimate average score of every candidate and
compare them with the target. We expected PCP and SPLOM to have
similar performance, while in Combined, we expected participants
would start with one view and check in the other.
Outlier-Detection: Find the student who has a much higher mark
in Engineering than all other subjects (Choose the most obvious
one). This task requires the participant to detect outliers or other
anomalies of the data with respect to the given measure. In PCP,
participants need to identify which candidate has a sharp rise to their
Engineering mark. In SPLOM, the participant needed to pick out
the most obvious singular point among the Engineering related di-
mensions. In Combined, we expected participants to prefer SPLOM
for outlier detection in the Combined condition, as a previous study
found SPLOM effective for this task [30].

Correlation-Estimation: Which two subjects are most positively
correlated? This task asks participants to assess the linear correlation
between all pairs of subjects. This is straightforward in SPLOM but
more difficult in PCP as participants must recognise the cross-line
patterns for correlation and reorder the axes to check all correlation
for all pairs. Harrison et al. [14] found experimentally that SPLOM
was significantly better for identifying positive correlation than PCP
and PCP was again demonstrated to be poor for this task recently
by Kwon and Lee [20]. The question our study aims to answer is
whether participants will be able to efficiently select the better view
for correlation in Combined.



Cluster-Identification: In which pair of dimensions are there most
clearly two distinct clusters? In this task, the participant was re-
quired to find groups of similar points based on visual features
such as proximity of lines or line density in PCP and clustering
of points in SPLOM. These clusters might be visually separated or
overlapping; it depends on how the grouping was performed. Par-
ticipants were asked to find the most distinct dimension. Similar to
the Correlation-Estimation task, we expected PCP to perform badly
and that in Combined participants would rely on the SPLOM view.

The tasks Best-Performer,  Subset-Tracing,  Object-
Comparisonrequire users to work with single data items to
identify, compare and calculate values. the tasks Outlier-Detection,
Correlation-Estimation, and Cluster-Identificationrequire partici-
pants focus on identify overall trends and general patterns of the
dataset.

4.2 Experimental Datasets

We generated synthetic data in order to ensure the generalisability of
our results. We used 6 dimensions, i.e. four subjects plus the age and
the name of the student, for the study. The same data sets were used
in each of the visualisation conditions. A variety of measures were
used to hide this so as to avoid a learning effect. In each condition
we used different names for the students and the subject names were
swapped between the data dimensions and the order of dimensions
shuffled in the visualisation. Modulo these changes the data for each
task was identical in each condition.

Two difficulty levels, easy and difficult, were created by adjust-
ing the density of the data and the distance between the correct
answer and the alternatives. Each dataset contained 100-200 obser-
vation points (100-120 points for easy and 180-200 points difficult).
For Best-Performer, Subset-Tracing, and Object-Comparison, there
was only a 10-30% difference between the correct answer and the
closest alternative, while for easy datasets the difference was 30-
100%. For the Outlier-Detection task, in difficult datasets at least
four obvious candidate points needed to be considered by partici-
pants, whereas only two candidates points required inspection in
the easy dataset. For Correlation-Estimation, in difficult datasets
the correlation coefficients ranged from 0.4 to 0.9 and there was
0.1 difference between the correct answer and its closest alternative.
The easy datasets correlation coefficient ranged from 0 to 0.9 with
at least 0.2 difference between the correct answer and its closest
alternatives. For Cluster-Identification, 2-5 clusters were generated
using the DBSCAN method [35]. The difficult datasets had a 50%
shorter reachability distance (the € parameter of DBSCAN) and the
minimum number of points in difficult clusters were 30% to 60%
less than those of easy datasets. Two examples of tasks with different
difficulty levels are shown in Figure 1.

We created 15 datasets for each trial: 3 small data sets for training,
6 easy datasets and 6 difficult datasets. Data was generated using
R and Mockaroo [25]. Subject scores were generated from 35 to
100, and age was generated from 17 to 23. Names were randomly
generated from a name database.

4.3 Participants and Setting

In order to avoid participant fatigue we split the experiment into
two separate parts. Each contained three tasks. Participants were
recruited for each part using ads on university-wide bulletin and
email lists. Four $50 gift cards were offered as an incentive for top
30% of fastest and most accurate responses.

Participants: We recruited 21 participants (8 female, 13 male) for
part A and 30 participants (9 female, 21 male) for part B, all with
normal or corrected-to-normal vision and without colour vision im-
pairment. The two parts of the experiment were conducted two
weeks apart. 9 participants attended both experiments. The partici-
pants’ age ranged from 19 to 55 with an average age of 29 years old.
Participants were asked about their prior experience using PCP and

49%

PCP SPLOM

Never seenit = Rarelyuse = Oftenuse

Figure 3: Self-declared prior experience of the 51 study participants.

SPLOM. Available options are: ‘Never seen before’, ‘Rarely use’ or
‘Often use’. As shown in Figure 3, 19 out of 51 participants (37%)
had never seen SPLOM before, while 25 out of 51 participants (49%)
had never seen PCP before. Participants were mostly students and
staff from our university.

Environment: The study was run on an Intel Core i7 MacBook Pro
(2016) and a 24-inch screen (1920 x 1080). During experiments,
participant gaze was tracked with a Tobii X3-120 Eye tracker. The
visualisation area was centred in a full-size window and participants
interacted with it using a mouse and keyboard. Visualisation size
was the same for all visualisations across all conditions.

4.4 Experimental Design & Procedure

Design: We used a within-subject, full-factorial design: 3 techniques
x 3 tasks x 12 + 3 training trials for each part of the experiment.
Since completing all six tasks required about 90 minutes, we split
the study into two, approximately 45 minute parts, run with different
participants (as detailed above) on different days to avoid fatigue. In
Part A we used the first 3 tasks (Best-Performer, Subset-Tracing, and
Object-Comparison) and the remaining 3 tasks (Outlier-Detection,
Correlation-Estimation, and Cluster-Identification) in Part B. Part
B was run about two weeks after Part A. We counter-balanced the
techniques, creating two groups: one group started with individual
view (PCP or SPLOM )(trained), while the other group started with
Combined (untrained). In Part B, the 9 participants who participated
in both studies were evenly distributed across these groups. We were
interested if participants’ use of the two views in Combined and
their performance varied depending upon whether they were trained
on both views individually before using Combined. Question order
was randomised.

During each trial a timer progress bar was displayed on the top of
the screen. Participants were instructed to remember the answer once
they found it and to press the space bar to view the answer options.
At that point, the timer stopped and the visualisation disappeared.
Completion time was measured from the point when visualisation
was shown on the screen, to the time when the participant pressed the
space bar. Tasks timed out after 30 seconds, and the participants were
shown the answer options. Answer options included (depending on
the task) a set of candidate data item names or axes names as well
as “None of the above” and “Too difficult”.

The experiments were conducted individually in a laboratory with
the presence of one instructor.

After receiving information about the study through the explana-
tory statement and agreeing to the consent form the study took the
following structure:

Background knowledge survey: Participants were asked to select
their prior experience using PCP and SPLOM (see Figure 3).
Eye-tracker calibration: Participants were asked to run a calibra-
tion for the eye-tracker (took about 20 seconds).

Trials: The participants were then presented in turn with with the
three visualisation conditions, and then for each of condition they
were presented in turn with the three different tasks.



Training: At the beginning of each condition and task, the experi-
menter:

1. Instructed each participant on the task and how the visualisa-
tion might be used to complete the task.

2. Advised that they have three training examples for that task
and visualisation technique, that the correct answers to the
training examples are provided after they submit their answers,
and that they can ask questions during the training.

3. Guided them through the first training example, demonstrat-
ing available interactions and encouraged the participant to
practise these. Then told them to try the next two training
examples. Participants were only allowed to proceed once they
had correctly answered each of the training examples.

4. Advised them that they must now answer the trials on their
own and that their answer and time would be recorded and that
there was a 30 second time limit. They were asked to complete
trials as accurately and quickly as possible.

Ranking and Feedback: At the end of the study participants were
asked to rank the three visualisation methods in terms of their prefer-
ences to solve each of three tasks. They were also given opportunities
to comment on the strengths and weaknesses of each visualisation
method between tasks.

5 RESULTS AND DISCUSSION
5.1 Data analysis

Data Collected: The following data was collected from each partic-
ipant:

* prior knowledge about PCP and SPLOM,

* completion time of each trial,

» answer of each trial for accuracy,

* eye-tracking data and all keyboard/mouse events,
* user preference of visualisation for each task.

For each of the three tasks in part A, we obtained 12 trials x 3
techniques x 21 participants = 756 trials (2268 trials in total). For
each of the three tasks in part B, we obtained 12 trials x 3 techniques
x 30 participants = 960 trials per task (2880 trials in total).

Data treatment: We removed 6 trials that had a task-completion
time less than 1 second as we considered them accidental clicks on
the space-bar. We treated the answers ‘Too difficult’ and ‘None of
above’ as errors, meaning that for each task the response was either
Correct or False. Reported completion times are for correct answers
only. We decided to keep trials where the participant had hit the time
limit for each task as participants were still able to give an answer
and we were more interested in accuracy than in completion time.
We also checked whether this affected our results, rerunning the
analyses after removing those timeout-trials, and found the same
result with respect to significances and ranking of completion time
and accuracy.

Statistical analysis: We analysed each of the tasks individually.
Both completion time and accuracy measures were not normally
distributed and we could not correct this by any standard transforma-
tion (Box-Cox transformation, log-transformation). We made sure
that this was not an artifact of including trials that hit the time-limit.
Time and accuracy were analysed individually for each task using
the non-parametric FRIEDMANS’ TEST for one-way factorial analy-
sis between techniques per test with a significance level of p < 0.05.
For post-hoc pair-wise comparison, we used MANN WHITNEY U
TEST, as removing trials resulted in unequal sample sizes.

SPLOM only

PCP only

SPLOM 13!

PCP 19!

Parallel Use

T T T T Ii
5 10 15 20 25

T 1

30

0
Time (seconds)

Fixations within: lIPCP area of interest; [llSPLOM area of interest

Figure 4: Five commonly used strategies on Combined views.

In the sections below, we report on results with a significance
level of p < 0.05 (¥), p < 0.01 (¥*), and p < 0.001 (¥**), for each
task individually. Numbers in brackets indicate mean values in
seconds (time) and mean-errors.

Figures 5, 6 and 7 depict the main descriptive statistics for the
three main objective measures, namely accuracy and completion
time, and user preference rating.

5.2 Eye-tracking data

We were interested in analysing the eye-tracking data to understand
the strategies employed when using the Combined view.
Eye-movement data extraction: The eye movement and mouse
data was post-processed in Tobii Studio into separate fragments for
each trial using the Combined view. We defined each of the two
views in the Combined view as Areas of Interest (AOI) in order to
study how participant attention was distributed between the views,
assuming that they were attending to whichever view they were
looking at. For each trial in Combined we measured the fixation
and visit duration participants spent looking at each of the two AOIs.
Then the fixation data based on the AOIs was computed and video
clips containing overlaid gaze paths were produced and used for
checking and identifying participant strategies, before applying sta-
tistical techniques across AOI fixation data to categorise participants
by the identified strategies as detailed below. Figure 10 shows the
aggregated relative visit duration that all participants spent on each
view in Combined view.

Eye-movement data analysis: Since Tobii studio has limited visu-
alisation capacity, we extracted fixation and visit duration data and
created our own visualisations to show the eye movement for each
trial and visualised them together with participants’ accuracy results
(see Figure 9). We then analysed the eye-tracking path videos and
data individually for each participant and identified five common
strategies (see Figure 4). To deal with the noisiness of eye-tracker
data, null fixation duration less than 200ms between two same AOI
segments were treated as the same AOI; The minimum fixation dura-
tion filter is set to 100ms; trials that including total null fixation time
larger than 5 seconds were excluded. The following classifications
were applied after eliminating any noise fixations, as follows:

SPLOM Only - participants stick to SPLOM only. Any fixations
on PCP last no more than 1 second.

PCP Only - participants stick to PCP only. Any fixations on
SPLOM last no more than 1 second.

SPLOM I*' — participants use SPLOM first, then switch to
PCP (Sequential use), may occasionally have more switches



but for no more than 1 second.

PCP I*' — participants use PCP first, then switch to SPLOM (Se-
quential use), may occasionally have more switches but for no
more than 1 second.

Parallel Use - participants switch frequently between both views.

Figure 9 is an example eye-tracking visualisation from the study:
the participant in (a) uses Parallel Use strategy that frequently
switches between views to solve tasks (Tasks 1-3 were training,
and tasks 4-15 are trials). Percentages of view use and results are
displayed on the right for each trial. Please see our video of eye-
movement recording of common strategies. Participant in (b) is an
example use of the PCP I*' strategy.

5.3 Task results

Best-Performer: For completion time, no statistical significance
was found between the visualisation techniques. For accuracy,
FRIEDMANS’ TEST found PCP and Combined (0.88) are signif-
icantly (**) more accurate than SPLOM (0.81). This result supports
H,,.rq11 and contradicts Hy. We expected participants to spend more
time on PCP since novice users were not familiar with parallel
coordinates may take extra time to learn unfamiliar visualisation.
Eye-tracking data confirmed this, with participants spending more
time on PCP than SPLOM in combined view. PCP I’! (41%) were
most popular and Parallel Use(29%) were second popular, and no
one use SPLOM Only in Combined views. (See Figure 8 Left.)
Subset-Tracing: For completion time, we found PCP (16.3sec,
SD=6.2) and Combined (15.6sec, SD=5.8) to be significantly (**)
faster than SPLOM (21.2sec, SD=6.1). We expected SPLOM to be
slower and less accurate due to increased cognitive effort in tracing
and filtering subset. For accuracy, we found SPLOM (0.63) was
significantly (***) worse than the other two views (Combined: 0.94,
PCP:0.92). Again, Eye-tracking data shows that participants spend
more time on PCP in the combined view. Figure 8 reveals that PCP
Only was most popular (41%), with the rest using both views to
check or verify their answers SPLOM 15! (18%), PCP I*' (18%),
and Parallel Use (24%), Again, no one use SPLOM Only in Com-
bined views..

Measure Tech. Best- Subset- Object- Outlier- | Correlation- Cluster-
Performer | Tracing | Comparison | Detection | Estimation | Identification

C 16.8 16.3 14 14 8.4 9.2]
Time PCP 16.5' 15.6 13.4 19.8 20.4 13.2]
SPLOM 19.4 21.2) 16.3 11.3 6.8| 7.8]
C 0.88 0.94 0.83 0.92 0.84 0.98
Accuracy |[PCP 0.88 0.92 0.81 0.79 0.65 0.88
SPLOM 0.81 0.64] 0.62 0.91 0.93 0.97
C 0.38 0.29 0.62/ 0.57, 0.4] 0.43
User 1pep 043067 0.24 0.2 0.07] 0.03
SPLOM 0.19 0.04] 0.14] 0.23] 0.53 0.53]

Figure 5: Mean results broken down by task for each of the three
visualisation techniques. Results show time, accuracy and percentage
of users preferring that visualisation. Yellow background indicates
values that are significantly different from the other two. Statistically
significant best values are highlighted in bold.

Object-Comparison: For completion time, we found no statistically
significant difference between the visualisations. For accuracy,
we found SPLOM (0.61) to be significantly (***) less accurate
than PCP (0.80) and Combined (0.81). Again, with no difference
in completion time and better accuracy, this supports H,,.,q;; and
contradicts Hy. Eye-tracking data showed Parallel Use (35%) is
the most popular strategy, and an equal porpotion of participants use
both PCP I*' (29%) and PCP Only (29%), no one using SPLOM
Only in Combined views.

Best-Performer

20s
10s
0s

Combined ~ PCP SPLOM

Object-Comparison

e

Combined ~ PCP SPLOM

Subset-Tracing

Combined ~ PCP SPLOM

Outlier-Detection Correlation-Estimation Cluster-Identification

20s 20s 20s
10s 10s. 10s
0s 0s 0Os

Combined  PCP SPLOM Combined ~ PCP SPLOM Combined ~ PCP SPLOM

Figure 6: Mean and standard deviation for completion time broken
down by task for the three visualisation techniques in Combined view
across six tasks.
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Figure 7: Mean and standard deviation for accuracy broken down by
task for the three visualisation techniques in Combined view across
six tasks.

Outlier-Detection:  For completion time, we found that
PCP (19.7sec, SD=7.8) was significantly (***) slower than
SPLOM (11.3sec, SD=7.8) and Combined (13.9, SD=9.1). For
accuracy, we found that SPLOM (0.90) and Combined (0.92) to
be significantly (***) more accurate than PCP (0.13). This sup-
ports H,,.rqi- Eye-tracking data shows that Parallel Use (27%)
and SPLOM I*' (27%) are both the most popular choice, and PCP
Only (12%) and PCP I*' (12%) were lease popular. This result
suggests that SPLOM was the most favoured choice for Outlier-
Detection.

Correlation-Estimation: For completion time, we found
SPLOM (6.7sec, SD=3.8) and Combined (8.4sec, SD=6.7) to
be significantly (***) faster than PCP (20.4sec, SD=7.8). For
accuracy, we found significance (¥**) between all techniques:
SPLOM (0.93) was the most accurate, followed by Combined (0.84),
while PCP (0.65) was the least accurate. We expected SPLOM to
perform better than PCP since it provides a straightforward view
of all pairs of dimensions whereas with PCP the participant has
to change the order of axes to check all possible combinations.
Eye-tracking data shows that no one used a PCP Only strategy;
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Figure 8: Left: (a):User preference of view in Combined view for each task. Right: (b) Strategies used in Combined view at each task (Based on

aggregated eye-tracking visit duration data)

SPLOM Only (48%) is most popular; and the rest used both: SPLOM
I8 (19%), PCP I’ (22% ), Parallel Use (11%). No participant used
PCP Only. This was the only task in which Combined was found to
be less accurate than the generally superior of the two independent
views (SPLOM). This result does not support H,,erqi1-
Cluster-Identification: For completion time, we found
SPLOM (7.7sec, SD=5.2) is significantly (***) faster than
PCP (13.2sec, SD=7.4) and Combined (9.2sec, SD=6.4). For
accuracy, we found Combined (0.98) was most accurate, followed
by SPLOM (0.97), and PCP was the least accurate. This result
supports H,,.,q;;- During the training session, participants spent a
larger amount of time on PCP, where eye-tracking data shows that
SPLOM Only (44%) is the most popular strategy, while the rest used
Combined for cross-checking: SPLOM I*' (19%), PCP 15" (22%),
and Parallel Use (22%). Again, no participant used PCP Only.
View Use: Based on the eye-tracking data visualised as shown in
Figure 4, we determined the time spent looking at each view in each
trial using the Combined visualisation and categorised the strategy
used. The aggregated results are shown in Figure 10 and 8. We also
compared strategies of participants who were shown the individual
views first (trained in single-views) to those shown Combined views
first (untrained in single-views). We found:

Over the six tasks, 63% participants on average chose to use both
views and 37% chose to use one view only.

Most of the participants trained in single-views used PCP
1" and Parallel Use in Best-Performer, Subset-Tracing, and
Object-Comparison, and SPLOM I*' and Parallel Use in Outlier-
Detection, Correlation-Estimation, and Cluster-Identification.

Participants untrained in single-views were more likely to use
both views. They were very likely to choose Parallel Use as their
strategy, while participants trained in single-views tended to choose
a mix of strategies. We suspect that this was because the untrained
participants were not sure which view was most appropriate for the
task and were still exploring which view is better to help them solve
the task.

5.4 Overall User Preference

After each task, participants were asked to choose a single visualisa-
tion technique that they preferred to use to solve the task. We used a
CHI-SQUARED TEST for this data analysis. There was no statistically
significant preference for the Best-Performer task. PCP was most
popular for Subset-Tracing, and Combined most favoured in the
Object-Comparison (62% (***)) and Outlier-Detection (57% (**))
task, while SPLOM (67% (***)) was most favoured for Correlation-
Estimation (53% (***)) and Cluster-Identification (53% (***)). On
the other hand, SPLOM was the least preferred for the Subset-
Tracing and Object-Comparison tasks, while PCP was the least pre-
ferred choice for Correlation-Estimation and Cluster-Identification.
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Figure 9: Upper (a): An example of Parallel Use strategy for 15
trials, training tasks (1-3) only display first 30 seconds. Lower (b): An
example use of PCP 15! strategy. Strategy classification rationale is
described in Section 5.2. Percentages in blue and orange represents
time used in PCP and SPLOM. Tick and cross represent correctness
of the result (training tasks excluded).

5.5 Discussion

We can confirm that Combined was always as good as, or sometimes
even slightly better than the best of the individual techniques (accept-
ing H,,.rq11)- However, we do not find any difference in completion
time for people using both views together or exclusively using one
view in the Combined condition.

Participants were able to identify the best view for each task and
swiftly change their strategies accordingly. Figure 8 shows that
selected strategies varied between tasks.

Correlation-Estimation is the only task where SPLOM was better
than Combined in terms of both accuracy and completion time.
The result that people struggle to identify correlation using PCP
confirms earlier studies [14,20]. In PCP participants have to re-order
the axes in order to examine all dimensions whereas in SPLOM it is
straightforward to identify correlation. In this case, the PCP view
may became a distraction or confuse people, hence the accuracy was
lower in the Combined view than in SPLOM only view — although,
Combined was still significantly better in both speed and accuracy
than PCP only. Thus, although we did observe that participants
unanimously chose to complete this task using SPLOM (Figure 8(b))
and benefitted from it, the presence of the PCP view still had a
detrimental (distractor) effect on completion time for this task.

Despite a minor trade-off in terms of completion time, we have
good results for accuracy in Combined, especially for the most
difficult and complex tasks.

Averaged over all six tasks, 45% of participants chose Com-
bined as their preferred view. However, eye-tracking results show
that 63% chose a strategy that involved both views. These results
are in accordance with the measures we found for completion time.

We think that the Combined view has an increased visual complex-
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Figure 10: Relative duration (bar-height) spent looking at each view
in Combined view. Task 1-3 are Training tasks.

ity which may lead to longer completion time. However, except in
Correlation-Estimation, we do not see any statistical significance in
the increase of completion time between Combined and the superior
view for the task.

We also found that novice users (according to self reported ex-
perience with the given visualisations) were only able to use basic
complementariness such as cross-checking their answers. By con-
trast, some expert users seem able to interact with both views to
effectively bypass the disadvantages of the worse view for a given
task and hence benefit from the Combined view (e.g., in the Object-
Comparison task, a notable number of participants performed se-
lection/filtering on PCP, then used SPLOM to find answers, then
returned to PCP for cross-checking).

In Parallel Use strategy, there were two groups of people: savvy
users who actively utilised both views and novice users still gaining
confidence with the individual visualisations. In the latter case, Com-
bined view could be either a distraction or the two views together
could have a positive, reinforcing and training effect. Resolving
whether combined views support training is an interesting area for
further study as discussed in Section 7.

In general, SPLOM are easier to use for the task of Outlier-
Detection, Correlation-Estimation, Cluster-Identification, while
PCP is the better choice for other tasks, including Best-
Performer, Subset-Tracing, Object-Comparison.

We grouped participants by their strategies for each task and re-
peated our tests on those groups. The result accords with the earlier
findings. In particular, Parallel Use and PCP 1% or SPLOM I*' have
similar or even better results for accuracy, and PCP Only and
SPLOM Only were identical with the single view performance.

5.6 Limitations

There are several limitations of our methodology that should be
noted. First, although in 5 out of 6 tasks Combined views outper-
form single views, we found that the standard deviation is high and
there are likely other advantages and disadvantages that affect indi-
vidual users performance. In particular, there seems to be a great
deal of individual difference in how effectively users are able to
use the interactive aspects of our interface. For example, several
users complain that highlighting & brushing, rather than supporting
them, is a distraction. The data density used in the experiments are
between 100-200 data records in each trail. As with all usability
studies, it cannot be assumed that our results would apply to larger
or differently structured data.

6 CONCLUSION

In this paper, we presented a combined representation of PCP and
SPLOM, and explored and tested the effect of perceptually com-
plementary views for multivariate data. We studied six tasks and
performed a detailed analysis of participants’ strategies for using the
combined view based on eye-tracking data.

Within the limitations of our tested conditions, we can conclude
the following:
PCP and SPLOM views are perceptually complementary.
From the experiment above we can see that our complementary view
has some clear advantages. In most multivariate data analysis tasks,
showing data in a point distribution can greatly help users’ com-
prehension overall (e.g., Correlation-Estimation, Outlier-Detection,
and Cluster-Identification) and line visualisation can help them iden-
tify single observation points easily across all dimensions. With
the Combined view, both data trends and detail tasks can be spotted
easily.
Placing perceptually complementary views side-by-side is an ef-
fective way to get the benefits of both.
As described in Section 2, there have been many proposals for more
complex interactive combinations of PCP and SPLOM views into
a single interactive display. These combinations pose a significant
design and implementation challenge and so far do not seem to
have been tested with real users. That is, evaluation is based on
qualitative use-case analyses by the authors and it is unclear whether
other users would experience the same benefits. In the mean-time,
what seems to us the simplest strategy for combining these views
(placing them side-by-side) has been, to the best of our knowledge,
hitherto untested. We do not claim that there is no benefit to these
more complex combinations - but hopefully our results can provide
a baseline upon which to improve.
Five common view use strategies were identified for Com-
bined views based on eye-tracking data.
While it seems a majority of users obtained benefit from the com-
bined view, it is important to note that not all users experienced the
benefits. Our finding that more expert users used both views in the
combined view leads us to speculate that with more training other
users may also obtain benefits from the Combined view.
Some people use complementariness without awareness.
User preference data does not completely agree with eye-tracking
results. Despite only 45% of participants voting for the Combined
view as their favourite strategy, eye-tracking shows that 63% of tasks
were completed by use of both views.
When one view is clearly better than the other for a particular
task, there is a small but significant overhead in terms of com-
pletion time in Combined views.
Despite the complementary effects described above, when a particu-
lar view is overwhelmingly better for a given task (e.g. Correlation-
Estimation), we did observe a relatively small but in some cases
significant increase in completion time to the combined view over
the best view for that task alone. Thus—while the combined view
may be the best choice in complicated analysis involving multiple
different subtasks, or frequent switching between tasks—it may be
contra-indicated when only a single task is being performed repeat-
edly and there is a clearly better view for that task.

7 FUTURE WORK

We plan to continue studying the effects of complementariness on
other types of datasets (e.g., for hierarchical data and dynamic net-
works). This can be done in a unified manner to maintain consistency
across all data types. We would like to better understand which per-
ceptually complementary views can improve completion time and
accuracy and how to measure the degree of perceptual complemen-
tariness of two representations and possible learning effect when
using combined views. In the paired views that have been studied
so far (PCP and SPLOM in this work, different graph visualisations



in [5]), there is a certain duality in terms of one view being data item
centric (e.g. PCP and nodelink diagrams) and one being relation-
ship centric (e.g. SPLOM and adjacency matrices). Is this a useful
categorisation that suggests further candidate views for pairing in a
perceptually complementary manner?

Most participants in our study seemed to able to use the combined
view to good effect, particularly those who had prior experience
with these kinds of visualisations. However, there was a sizeable
minority who did not experience this benefit. We would like to
study further the effect of training on people’s effectiveness in using
perceptually complementary displays, for example, to determine
if the use of a combined display helps people to learn to use the
individual views more effectively. However, this would require a
different, longitudinal study design.
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