
Seeing Around Corners:

Fast Orthogonal Connector Routing

Kim Marriott1, Peter J. Stuckey2, and Michael Wybrow1

1 Caulfield School of Information Technology,

Monash University, Caulfield, Victoria 3145, Australia,

{Michael.Wybrow,Kim.Marriott}@monash.edu
2 Department of Computing and Information Systems,

University of Melbourne, Victoria 3010, Australia,

pstuckey@unimelb.edu.au

Abstract. Orthogonal connectors are used in drawings of many types of net-

work diagrams, especially those representing electrical circuits. One approach

for routing such connectors has been to compute an orthogonal visibility graph

formed by intersecting vertical and horizontal lines projected from the corners

of all obstacles and then use an A* search over this graph. However the search

can be slow since many routes are in some sense topologically equivalent. We

introduce obstacle-hugging routes which provide a canonical representative for a

set of topologically equivalent routes. We also introduce a new 1-bend visibility

graph that supports computation of these canonical routes. Essentially this con-

tains a node for each obstacle corner and connector endpoint in the diagram and

an edge between two nodes iff they can be connected using an orthogonal connec-

tor with one bend. We show that the use of a 1-bend visibility graph significantly

improves the speed of orthogonal connector routing.

Keywords: orthogonal routing, visibility graphs, circuit diagrams

1 Introduction

Most interactive diagram editors provide some form of automatic connector routing be-

tween shapes whose position is fixed by the user. Usually the editor computes an initial

automatic route when the connector is created and updates this each time the connec-

tor end-points (or attached shapes) are moved. Orthogonal connectors, which consist

of a sequence of horizontal and vertical line segments, are a particularly common kind

of connector, used in ER and UML diagrams among others. Wybrow et al. [1] gave

polynomial time algorithms for automatic object-avoiding orthogonal connector rout-

ing which are guaranteed to minimise length and number of bends.

The connector routing algorithm given in Wybrow et al. [1] uses a three stage pro-

cess. The first stage computes an orthogonal visibility graph in which edges in the

graph represent horizontal or vertical lines of visibility from the corners and connector

ports of each obstacle. Connector routes are found using an A⋆ search through the or-

thogonal visibility graph that finds a route that minimizes bends and overall connector

length. Finally, the actual visual route is computed. This step orders and nudges apart

B

D

C

A

B

D

C

A

(a) (b)

Fig. 1. (a) The orthogonal visibility graph and three topologically equivalent routes of equal cost

between objects A and B. (b) The 1-bend visibility graph showing the visibility of nodes from the

bottom left of C (star) going upwards to the circled nodes, with arrows indicating directions. The

asymmetry is illustrated by the edge from the diamond node of D to the diamond node on C.

the connectors in shared segments so as to ensure that unnecessary crossings are not

introduced, that crossings occur at the start or end of the shared segment and that con-

nectors where possible run down the center of alleys. Unfortunately, for larger dense

graphs the approach can be quite slow, the dominating cost is the time taken to find the

optimal route for each connector in the second stage.

One of the main reasons that orthogonal connector routing is slow is that there are

many “topologically equivalent” routes of equal cost to each vertex, greatly increasing

the search space size. Figure 1 illustrates the problem. However, for our purposes these

routes are equivalent as computation of the actual visual route will lead to an identical

final layout (using the dashed edge which goes midway between objects B and C). The

main contributions of this paper are to:

– Identify a class of connector route we call obstacle-hugging that provide a canoni-

cal representative for a set of topologically equivalent routes;

– Present a new kind of visibility graph for computing these routes which we call the

1-bend visibility graph in which nodes are object vertices and a search direction and

there is an edge between two nodes if they can be connected using an orthogonal

connector with one bend;

– Provide theoretical and empirical proof that this new approach is significantly faster

than the current approach.

Our new approach has similar characteristics to the standard visibility graph used

in poly-line connector routing. If we have n objects then the orthogonal visibility graph

has O(n2) nodes, O(n2) edges and an optimal route can be O(n2) in length. In contrast

the 1-bend visibility graph has O(n) nodes, O(n2) edges and any optimal (orthogonal)

route is O(n) in length. This is similar to poly-line connector routing where the standard

visibility graph has the same asymptotic sizes [2]. It also bears some similarities to the

2

rectangularization approach of Miriyala et al. [3], though rectangularization is heuristic

and so unlike our approach is not guaranteed to find an optimal route.

Orthogonal connector routing has been extensively studied in computational ge-

ometry, in part because of its applications to circuit design. Lee et al. [4] provides an

extensive survey of algorithms for orthogonal connector routing, while Lenguauer [5]

provides an introduction to the algorithms used in circuit layout. The 1-bend visibility

graph, is as far as we are aware, completely novel.

2 Obstacle Hugging Routes

For simplicity we assume obstacles are rectangles: more complex shapes can be approx-

imated by their bounding rectangle and assume for the purposes of complexity analysis

that the number of connector points on each object is a fixed constant.

We are interested in finding a poly-line route of horizontal and vertical segments for

each connector. We specify such an orthogonal route as sequence of points p1, . . . , pm

where p1 is the start connector point, pm the end connector point and p2, . . . , pm−1 the

bend points. Note that orthogonality means that either x j+1 = x j or y j+1 = y j where

pi = (xi,yi). We require that the routes are valid: they do not pass through objects and

only contain right-angle bends, i.e., alternate horizontal and vertical segments.

We wish to find routes that are short and which have few bends: We therefore as-

sume our penalty function p(R) for measuring the quality of a particular route R is a

monotonic function of the length of the path, ||R||, and the number of bends (or equiv-

alently segments) in R. A route R between two connector points is optimal if it is valid

and it minimises p(R).

Given a valid object-avoiding orthogonal route p1, . . . , pi, pi+1, . . . , pm where pi =
(xi,yi), and pi+1 =(xi+1,yi+1) and xi+1 = xi, that is pi, pi+1 is a vertical edge, we can de-

fine a vertical edge move creating a new orthogonal route p1, . . . , p′i, p′i+1, . . . , pm where

p′i = (x,yi) and p′i+1 = (x,yi−1). We can similarly define a horizontal edge move. Note

that an edge move may make the route invalid, e.g. pi = pi−1. We can restore this by

removing unnecessary points and edges, if pi = pi−1 we obtain a new proper orthogonal

route p1, . . . , pi−2, p′i+1, . . . , pm.

An edge move is topology preserving if the rectangle enclosed by pi, pi+1, p′i+1, p′i
does not overlap any obstacles. Topology preserving edge moves induce a natural equiv-

alence relationship on the set of optimal routes: Two optimal orthogonal routes R1 and

R2 from p1 to pm are topologically equivalent if there is a sequence of topology pre-

serving edge moves that map R1 to R2. Because R1 and R2 are optimal no edge move

will remove points and edges since otherwise the route was not optimal. This means

each move is invertible and so this is a true equivalence relationship. Each of the routes

shown in Figure 1 are topologically equivalent since they can be mapped to one another

by a single horizontal edge move.

One of the main reasons that existing orthogonal connector routing is slow is that

the A* algorithm explores a large number of topologically equivalent routes. In order to

reduce the search space we want to choose a single canonical route for each equivalence

class. Object-hugging routes provide such a canonical representative:

3

B

A

pi−1

pi+1

si

pi

pi+2 si+1

B

A

pi−1

pi+1

pi

pi+2 si+1

(a) (b)

A

pi−1

pi+1 si+1

pi

pi+2

B

A

pi−1

pi+1 si+1

pi

pi+2

B

si

(c) (d)

Fig. 2. Various cases in the construction of an optimal obstacle-hugging route.

An orthogonal route p1, . . . , pm is obstacle-hugging if each segment |p j, p j+1| for

j = 2, . . . ,m− 2 intersects the boundary of an object in the direction from p j−1 to p j.

This means the path bends around the far side of each object when following the route

from its start.

The definition means that all intermediate (i.e., not the first or last) segments |p j, p j+1|
on an obstacle-hugging route have a supporting object o j s.t. a vertex s j of o j lies on

the segment. We call s j the support vertex for the segment |p j, p j+1|.

In Figure 1 the bottom route between A and B is obstacle-hugging since the second

segment intersects the top of the shape and the first segment goes towards the top.

Neither the middle route or the top route along the bottom of B is obstacle-hugging.

Theorem 1. Given an optimal orthogonal route from p1, . . . , pm there is an optimal

orthogonal route from p1 to pm which is obstacle-hugging.

Proof. We show how, given the optimal route R = p1, . . . pm, to construct an topologi-

cally equivalent route which has the same distance and number of bends and is obstacle-

hugging.

The construction is iterative backwards for i = m−1 to 2. For each i it computes a

support vertex si for segment |pi, pi+1| such that |si, pi+1| has a nonempty overlap with

the side of some object in the direction from pi−1 to pi and possibly moves pi and pi+1

while still maintaining the same topology and overall cost.

Assume that we have computed support vertex si+1, we show how to compute si.

There are two cases to consider: pi−1, pi, pi+1 and pi+2 form a U-turn (Figure 2(a)) or

pi−1, pi, pi+1 and pi+2 form a step (Figure 2(c)).

4

In the case of the U-turn, we must have an object B whose boundary lies along the

segment |pi, pi+1| as shown in Figure 2(a) because otherwise we could move the seg-

ment as shown in Figure 2(b) which would imply that R was not optimal. We therefore

set si to be the vertex of object B closest to pi−1. Clearly |si, pi+1| intersects the side of

the object B in direction from pi−1 to pi.

In the case of the step, we move the segment |pi, pi+1| toward pi−1 by decreasing

the length of segment |pi−1, pi| and increasing the length of segment |pi+1, pi+2| until

it runs into some object B. This must happen before the length of segment |pi−1, pi|
decreases to 0 because otherwise we could have reduced the cost of R by removing

this segment and the two bend points which would imply that R was not optimal. The

construction is shown in Figure 2(c) and (d). We again set si to be the vertex of object B

closest to pi−1. And once more |si, pi+1| intersects the side of the object B in direction

from pi−1 to pi. ⊓⊔

Theorem 2. An optimal obstacle-hugging route is canonical, that is for each optimal

route there is exactly one topologically equivalent optimal obstacle-hugging route.

Proof. Suppose to the contrary we have two optimal obstacle-hugging routes R and R′

from p1 to pm which are topologically equivalent. As they are topologically equivalent

they must have the same number of segments: let pi and p′i be the ith points in route

R and R′ respectively. We prove by induction that pi = p′i for i = 1, · · · ,m. As they

both start from the same connection point we have that p1 = p′1. Now assume that

pk = p′k for k = 1, · · · , i. If i + 1 = m then as R and R′ have the same end point so

pi+1 = p′i+1. Otherwise assume that pi+1 6= p′i+1. As each route is obstacle-hugging the

next segments |pi+1, pi+2| and |p′i+1, p′i+2| in each route must have a support vertices

si+1 and s′i+1. But this implies that there is an object between the two routes. Thus there

is no sequence of edge moves that can make these two routes the same since they travel

on different sides of at least one object and so this contradicts the assumption they are

topologically equivalent. ⊓⊔

3 The 1-Bend Visibility Graph

While we could compute object-hugging routes using the orthogonal visibility graph by

modifying the A* algorithm to prune non-object-hugging routes we can also compute

them using a different kind of visibility graph. This follows from the observation that

we can regard the support vertices s2, . . . ,sm−2 for a canonical optimal object-hugging

route p1, . . . , pm as “split points” between a sequence of 1-bend visibility edges between

object vertices, apart from the first and last segments which go to the start and end

connector point respectively. Thus when we search for an optimal route we can search

in a 1-bend visibility graph and build the a canonical route as p1,s2,s3, . . . ,sm−2, pm.

This ensures we will only consider one possible topologically equivalent route.

The 1-bend visibility graph is a directed graph where nodes are combination of con-

nector points and corners of rectangles. The 1-bend visibility graph can be constructed

as follows. Let I be the set of interesting points (x,y) in the diagram, i.e., the corners of

the rectangular objects and the connector points.

5

1. Generate the interesting horizontal segments HI = {|(l,y),(r,y)| where (x,y) ∈ I

and r is the biggest value where no object overlaps |(x,y),(r,y)| and l is the least

value where no object overlaps |(l,y),(x,y)|.
2. Generate the interesting vertical segments VI = {|(x,b),(x, t)| where (x,y) ∈ I and

t is the greatest value no object overlaps |(x,y),(x, t)| and b is the least value no

object overlaps |(x,b),(x,y)|.
3. Compute the 1-bend visibility graph by intersecting all pairs of segments from HI

and VI . Suppose we have intersecting segments |(x,b),(x, t)| ∈Hi and |(l,y),(r,y)| ∈
Vi we add an edge from each vertex point (x,h) of an object o1 on the horizontal

segment where the segment |(x,h),(x,y)| intersects the side of o1 in the direction

(x,h) to (x,y) to each vertex point (v,y) on an object o2 in the direction (x,y) to

(v,y) where the segment |(x,y),(v,y)| only intersects the object at (v,y).
Similarly we add an edge from each vertex point (v,y) of an object o1 on the vertical

segment in the direction (v,y) to (x,y) where |(v,y),(x,y)| intersects the side of o1

to each vertex point (x,h) on an object o2 in the direction (x,y) to (x,h) where

|(x,y),(x,h)| only intersects the object at (x,h).
The edges to and from connection points with directions are created similarly but

there is no requirement for intersection/nointersection with any object.

For example the directed edges from the bottom left corner (star) of C going up-

wards in the visibility graph of Figure 1(a) are shown in Figure 1(b) as circles with

directions given by arrow. There are edges from the connection point on A in the up

direction go to each of circled nodes except the one on A itself. Note that the graph is

not symmetric! The only edge from the top side of shape D to shape C goes from the

diamond node in the right direction, to the diamond node on C in the down direction.

Theorem 3. The orthogonal visibility graph can be constructed in O(n2) time for a

diagram with n objects using the above algorithm. It has O(n) nodes and O(n2) edges.

Proof. The interesting horizontal segments can be generated in O(n logn) time where

n is the number of objects in the diagram by using a variant of the line-sweep algorithm

from [6, 7]. Similarly for the interesting vertical segments. The last step takes O(n2)
time since there are O(n) interesting horizontal and vertical segments. It follows from

the construction that it has O(n) nodes and O(n2) edges. ⊓⊔

Construction of a path from connector point p1 to pm starts from p1 and constructs

a path for each possible (feasible) direction, to reach pm in any direction. The best path

(according to the penalty function p) is returned for final visual route computation.

Consider the construction of the path from the connection point on A leaving ver-

tically to the connection point on B entering vertically. The only nodes adjacent to the

initial connection point are the circled nodes of B, C and D. Using A* search and the

admissable heuristic described in [1], the node on C is preferable, and then we find an

optimal route to the connection point on B (the bottom route in Figure 1). The remaining

nodes are fathomed by the heuristic. Effectively we find the route with no search. Con-

trast this with the usual approach [1] where every node on the three paths in Figure 1(a)

needs to be visited as well as others!

6

Table 1. Evaluation of 1-bend and orthogonal visibility graphs for several real-world diagrams.

We give total routing time, construction time and number of edges in visibility graph, and the

average time and number of steps in the search of each connector path. Times are in milliseconds.

1-bend visibility graph Orthogonal visibility graph

Total Construction Routing (avg) Total Construction Routing (avg)

Diagram Time Time |E| Time Steps Time Time |E| Time Steps

v185e225 197 41 35K 0.3 4 216 34 28K 0.4 34

v508e546 867 191 196K 0.5 3 1,964 185 136K 2.6 28

v4330e2755 180,831 14,070 25.9M 42 178 1,829,431 6,741 3.0M 645 14,859

4 Evaluation and Conclusion

Theoretically, searching for optimal obstacle-hugging connector routes over the 1-bend

visibility graph should be considerably faster than finding optimal routes in the orthog-

onal visibility graph. This is because we don’t explore topologically equivalent routes,

but also since the optimal route is O(n) in length where n is the number of obstacles

rather than the O(n2) length in the orthogonal visibility graph.

We compared the performance of a prototype implementation of the 1-bend vis-

ibility graph approach against the orthogonal visibility graph implementation in the

libavoid C++ routing library. The test machine was a 2012 MacBook Pro with a 2.3

GHz Intel Core i7 processor and 16GB of RAM. As shown in Table 1, while 1-bend

visibility graphs are larger and take longer to build, routing over them is significantly

faster. For a very large diagram like our final example, use of a 1-bend visibility graph

speeds up connector routing by a factor of ten!

We have presented a canonical connector route and a new kind of visibility graph

that significantly improves the speed of orthogonal connector routing. We plan to in-

clude the new approach in our widely used connector routing library libavoid.

Acknowledgments. We acknowledge the support of the ARC through Discovery Project

Grants DP0987168 and DP110101390.

References

1. Wybrow, M., Marriott, K., Stuckey, P.J.: Orthogonal connector routing. In: Graph Drawing

2009. Volume 5849 of LNCS., Springer (2010) 219–231
2. Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental connector routing. In: Graph Drawing

2005. Volume 3843 of LNCS., Springer (2006) 446–457
3. Miriyala, K., Hornick, S.W., Tamassia, R.: An incremental approach to aesthetic graph layout.

In: Proc. 6th Intl. Workshop on Computer-Aided Software Engineering, IEEE (1993) 297–308
4. Lee, D., Yang, C., Wong, C.: Rectilinear paths among rectilinear obstacles. Discrete Applied

Mathematics 70(3) (1996) 185–216
5. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. John Wiley & Sons,

Inc., New York, NY, USA (1990)
6. Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Graph Drawing 2005.

Volume 3843 of LNCS., Springer (2006) 153–164
7. Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal—correction. In: Graph

Drawing 2006. Volume 4372 of LNCS., Springer (2007) 446–447

7

