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ABSTRACT

We present the first practical Integer Linear Programming model for
Sankey Diagram layout. We show that this approach is viable in
terms of running time for reasonably complex diagrams (e.g. more
than 50 nodes and 100 edges) and also that the quality of the layout
is measurably and visibly better than heuristic approaches in terms of
crossing reduction. Finally, we demonstrate that the model is easily
extensible (compared to complex heuristics) through the addition of
constraints, such as arbitrary grouping of nodes.

Keywords: Visualization. graph drawings. integer programming.

Index Terms: Human-centered computing—Visualization—
Visualization techniques—Graph drawings

1 INTRODUCTION

Sankey diagrams are useful in presenting quantity and connectivity
of flows between entities across time (see Figures 1 and 2 for exam-
ples). Usually, Sankey diagrams are drawn with a fixed set of layers
(vertical lines) corresponding to different time steps. Although a very
old representation (originally used for visualizing energy transfer in
steam engines [12]), they are growing in popularity and importance
as a method for visualizing event sequence data, such as customer
take up of different product categories, or web page views in popular
tools like Google Analytics.

With similarities to the layered-graph drawing problem, the place-
ment of entities within layers of a Sankey Diagram to avoid crossings
between flows (edges), is a challenging combinatorial problem. It
differs from layered graph drawing in that the edges of a Sankey
Diagram have thickness corresponding to the value they encode, and
so not all crossings have equal importance. The current approaches
to arranging nodes in Sankey Diagrams adapt layered graph-drawing
heuristics, as described in Section 2.

In this paper we propose an Integer Linear Programming (ILP)
model that allows us to use state-of-the-art solver technology to
obtain layouts that are provably optimal (Section 3). We show that
the optimal layouts are measurably and visibly better, in terms of
crossing cost, than that achieved by heuristics (Section 4). While
there is a significant cost in terms of running time, we find that
the solver is able to find optimal solutions for realistically complex
Sankey diagrams in only a few seconds or so. Thus, the technique
is already applicable in situations where a highly interactive layout
is not necessary (e.g. static diagrams for communication purposes).
Layout that is proven to be optimal is also very useful, for example,
as a baseline or ground-truth in usability studies or evaluations of
heuristics [4].
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Figure 1: Heuristic Layout (Sugiyama)

Figure 2: Optimal Layout

Another advantage of our ILP model is that, as a declarative rep-
resentation of the problem rather than an imperative implementation
of a specific algorithm, it is easily customizable or extensible to
different applications through the specification of additional con-
straints. We explore one such possibility—the addition of grouping
constraints over the node positions—in Section 5.

2 RELATED WORK

Layered or hierarchical network diagrams are used to represent
dependency relations between components that belong to different
layers. The readability of such a diagram can typically be measured
in terms of edge crossings between layers, which depends on the
position of the nodes in each layer. Since the number of node
orderings on each layer is factorial in the number of nodes in that
layer, the problem of minimizing the number of crossings is very
combinatorial. Unsurprisingly, this problem has been proven to be



NP-hard even when there are only two layers [7]. For that reason,
past research has focused on developing heuristics methods that can
quickly compute a node ordering that gives few crossings, albeit a
non-optimal ordering. Sugiyama et al. [13] developed a four-stage
heuristic method to draw a hierarchical network. The first two stages
of this heuristic handle cycle removal and the assignment of nodes
to layers. The third stage in the Sugiyama method defines the node
ordering with a barycentric method. In this heuristic approach, one
layer has a fixed node ordering and the subsequent layer is able
to move its nodes. The free nodes are placed in the barycentric
coordinate of its neighbor nodes in the fixed layer. After setting the
node ordering of the free layer, this layer is now fixed and the next
adjacent layer is free to move its nodes and find its corresponding
node ordering. A similar approach, called the median heuristic, is
studied by Eades and Wormald [5] where the position of the free
nodes is given by the median of its neighbour nodes and not the
barycentric. The fourth stage is, given the ordering within levels
chosen at the previous step, finding an aesthetic, non-overlapping
arrangement of node boxes and routing of edge curves. Various
heuristic or mathematical programming techniques are applicable
for this phase [3]. This paper focuses on optimal techniques for the
third, node ordering phase as it applies to Sankey Diagrams.

Another approach to optimize the readability of a layered graph
was introduced by Mutzel [10] and consists in solving the k-level
planarization problem. In this research, the aim is to find the mini-
mum set of edges that need to be removed for the diagram to become
planar. Mutzel discusses that this approach can provide a clearer
representation of a layered network. Gange et al. [6] have further
built on Mutzel’s work and created a hybrid method that uses both
crossing edges minimization and k-level planarization to determine
if this can improve the readability of a layered diagram. In this work,
an optimization model was developed with an objective function
that aims to minimize the weighted sum of the number of crossing
edges and the number of removable edges for planarization. They
state that a combination of both criteria leads to better unweighted
layered drawings than only considering one of the approaches.

Previously mentioned works focus chiefly on the reduction of the
number of crossing edges, but they do not consider the case where
edges have a weight, i.e. various degrees of importance, which
can for instance be represented by different edge widths. In this
situation, a crossing between two “thick” edges should be penalized
more than a crossing between two “thin” edges. Alemasoom et
al. [1] developed a two-step criterion to convey a more readable
Sankey diagram that considers a weighted layered graph. They first
applied the heuristic approach from Sugiyama’s method to find a
node ordering that reduces the number of edge crossings. Node
placement within a layer is solved with a linear program that aims to
minimize the weighted sum of the distance between two nodes. This
layout is not optimal, as it uses a heuristic method to find the node
ordering. Further, this heuristic does not take into consideration the
widths of the edges.

3 AN INTEGER LINEAR PROGRAMMING MODEL

An ILP model encodes a problem and its solutions using integer
variables, linear constraints on these variables, and a linear objective
function that is either maximized or minimized [2]. ILP can model
many optimization problems and is NP-hard to solve in general.
However, there exists very efficient software (called solvers) that
allow many practical NP-hard problems to be solved to optimality
within reasonable time once modeled as ILPs. In many cases, ILP
models are easier to write and faster to solve (using ILP solvers) than
dedicated algorithms. The main reason is that ILP solvers are very
mature products: they have been developed for decades and benefit
from 50+ years of research [9]. They incorporate techniques that
work on many different problems and are likely to work on newly
defined ones as well. Further, the expressiveness and generality

of ILP allows models to be extended without having to change
algorithms. We demonstrate this property in Section 5. Note that
ILP solvers are usually referred to as “MIP solvers” as they can
solve Mixed-Integer Programs, which are more general than ILPs.

Input Data
We first describe the input of the Sankey diagram problem. A graph
G = (V,E) is given with a partition of the nodes across k layers, such
that no edge has both endpoints in the same layer (i.e. the graph
is k-partite), and weights wuv for each edge uv ∈ E. We denote by
L = {0, . . . ,k−1} the set of all layers and by L1 = {0, . . . ,k−2}
the set of all layers except the last one. We further denote the set of
nodes in layer k ∈L by Vk, and we thus have V =V0]·· ·]Vk−1,
where ] is the symbol for the disjoint union. Finally, we define Ek
for all k ∈L1 as the set of edges that have one endpoint in layer k
and the other in layer k+1. For all uv ∈ Ek,k ∈L , we will use the
convention that the first node u ∈Vk and the second node v ∈Vk+1.

In our models, we will suppose without loss of generality that
any edge uv ∈ E satisfies u ∈ Vk and v ∈ Vk+1, i.e. any edge has
endpoints in two consecutive layers. If this is not the case in the
original graph, additional nodes can be introduced to transform a
“long” edge into multiple edges between consecutive layers, with
weights on the “small” edges being equal to the weight of the “long”
edge. We therefore have E = E0]·· ·]Ek−2.

Decision Variables
We define two types of binary variables:

• ∀k ∈L ,∀u1,u2 ∈Vk,u1 6= u2, xu1,u2 is a binary variable that
indicates the relative position of the nodes u1 and u2 in a layer
k, i.e. xu1,u2 = 1 if and only if u1 is “above” u2 on layer k
(assuming vertical layers).

• ∀k ∈L1,∀u1v1,u2v2 ∈ Ek,u1v1 6= u2v2,cu1v1,u2v2 is the binary
variable that indicates whether edges u1v1 and u2v2 cross.

Objective Function
As discussed in Section 2, the objective function to optimize must
quantify the readability of a diagram. We thus define the objective
function to minimize as the sum, over every pair of edges, of their
crossing area. For a pair of edges that cross, the crossing area is
simply the product of the weights of these edges. Otherwise, if two
edges do not cross, the area naturally equals zero. Note that although
we are calling this a “crossing area”, this only corresponds to an area
in the geometric sense if the width of the drawn edges is linear in the
weight, and if the crossing has the shape of a rectangle. Formally,
the objective function is given by

Minimize: ∑
k∈L1

u1v1,u2v2∈Ek
u1v1 6=u2v2

(wu1v1 ×wu2v2)cu1v1,u2v2 . (1)

Note that if every edge has weight 1, then (1) simply minimizes the
number of crossings.

Constraints
The next step to develop the full model is to define the constraints
of the model. By definition of xu1,u2 , either u1 is above u2 or, exclu-
sively, u2 is above u1. This can be encoded by the constraint

xu1,u2 + xu2,u1 = 1 ∀k ∈L ,u1,u2 ∈Vk,u1 6= u2. (2)

Constraint (2) enforces consistency for any two nodes in the same
layer, i.e. both of them cannot be “above” the other one. However, it
does not prevent this phenomenon for three of more nodes, e.g. u1
is above u2 (xu1,u2 = 1), u2 is above u3 (xu2,u3 = 1), and u3 is above
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Figure 3: The two configurations in which edges u1v1 and u2v2
cross.

u1 (xu3,u1 = 1). We therefore need to enforce the transitivity of the
relation “is above”, and we do so by defining the constraint

xu3,u1 ≥ xu3,u2 + xu2,u1 −1

{
∀k ∈L ,u1,u2,u3 ∈Vk,

u1 6= u2 6= u3,u1 6= u3.
(3)

This constraint is only active (i.e. it forces xu3,u1 = 1) when both
xu3,u2 = xu2,u1 = 1, which means it forces u3 to be above u1 if u3
is above u2, and u2 is itself above u1. Doing so for every triplet of
nodes in each layer incurs a total ordering of the nodes on that layer.

The variables c must now be defined and linked to the positioning
variables x. For a layer k ∈L1 and two edges u1v1 and u2v2 in Ek,
the two edges cross if and only if u1 is above u2 and v2 is above v1,
or if u2 is above u1 and v1 is above v2, as shown in Figure 3. The
following constraints enforce c to take value 1 in these two cases:

cu1v1,u2v2 + xu2,u1 + xv1,v2 ≥ 1, (4)
cu1v1,u2v2 + xu1,u2 + xv2,v1 ≥ 1, (5)

for all ∀k ∈L1,∀u1v1,u2v2 ∈ Ek,u1v1 6= u2v2. Indeed, in Figure 1,
on the left, we have u1 above u2, i.e. xu2,u1 = 0, and also xv1,v2 = 0,
thus in this case constraint (4) enforces cu1v1,u2v2 = 1. On the right
of Figure 1, we have xu1,u2 = 0 and xv2,v1 = 0, therefore constraint
(5) ensures that cu1v1,u2v2 = 1. Note that we do not need to enforce
c variables to take value 0 when the corresponding edges are not
crossing since we are minimizing (1), and all weights are positive.

Finally, we formally specify that variables x and c are binary:

xu1,u2 ∈ {0,1} ∀k ∈L ,∀u1,u2 ∈Vk,u1 6= u2, (6)
cu1v1,u2v2 ∈ {0,1} ∀k ∈L1,∀u1v1,u2v2 ∈ Ek,u1v1 6= u2v2. (7)

Improving performance with additional constraints
Constraints (2), (3), (4), (5), (6) and (7) define the set of feasible
solutions of our ILP model, each of which corresponds to a valid
Sankey diagram. However, additional constraints can be added that
may improve the performance of ILP solvers. Such constraints can
be devised by discovering additional structure in the problem.

A first simple constraint is due to the symmetry of the “crossing”
relationship encoded by variables c, in that if the edge u1v1 ∈ Ek
crosses an edge u2v2 ∈ Ek, then obviously u2v2 crosses u1v1. The
symmetry constraint is set by:

cu1v1,u2v2 = cu2v2,u1v1 . (8)

Although it is a direct observation, ILP solvers currently do not
automatically detect and exploit this equality. Adding (8) allows for
better presolving, i.e. the ILP solver can simplify the input model
by deleting redundant variables and constraints, which results in a
slight improvement in performance.

A second constraint comes from the observation that if all four
possible edges u1v1,u1v2,u2v1,u2v2 exist for two nodes u1 and u2
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Figure 4: Two (of four) configurations for nodes u1,v1,u2 and v2.

in layer k and two nodes v1 and v2 in layer k+1, then exactly two
of them must cross:

cu1v1,u2v2 + cu1v2,u2v1 = 1. (9)

Figure 4 depicts the fact that a crossing must occur regardless of
the positions of the nodes. Constraint (9) is implied by constraints
(2-7) all together, but not by (2-5) only. This is where constraint
(9) improves the performance of ILP solvers: ILP solvers solve a
continuous relaxation of the ILP (i.e. by ignoring constraints (6)
and (7)) very efficiently (typically with the simplex algorithm) to
guide and shorten the search for an optimal solution, but this does not
provide a feasible binary solution in general. Indeed, with constraints
(2-5) only, fractional variables are allowed, and an optimal solution
to this continuous problem is x = 0.5 and c = 0 and its objective
value is 0. By adding constraint (9), the ILP solver will detect
that at least one crossing will arise every time four edges are in
the configuration we have described. This produces significant
performance improvements.

Further improvements with branching priorities
In the ILP model we define, the integrality of variables x implies
the integrality of variables c: if we omitted constraint (7) from the
ILP model, and thus c were allowed to take fractional values, then
c would still be assigned integer values by the solver. This can be
easily established using constraints (4) and (5).

One way to exploit this observation and increase performance is
therefore to completely remove constraint (7) from the model. How-
ever, a better improvement can be obtained by keeping constraint
(7), and instead increasing the branching priorities of all variables x.
Branching priorities are used in the enumeration algorithm that is
central to all ILP solvers, the Branch-and-Bound algorithm, which
chooses to “branch” on some integer variables to recursively explore
the solution space. By changing the branching priorities, we indicate
to the solver that only variables x need to be branched on, as the
integrality of variables c will follow. In the experimental setup of
Section 4, setting a higher priority to the x variables than to the c
variables improved the solving time by a factor of 2 for the smaller
instances, up to a factor of 10 for the larger ones.

4 RESULTS

We tested the described model on an AMD Opteron 6272 processor
at 2.7 GHz with 32GB of RAM running Ubuntu 16.04 LTS. We used
Zimpl v3.3.4 to model the ILPs and Gurobi v7.5.1 (single-threaded)
to solve them. The D3’s Sankey plugin was used to plot the heuristic
and optimal diagrams.

A real world example
We have tested our method on the “World Greenhouse Gas Emis-
sions” data from the World Resources Institute [8]. After transform-
ing the “long” edges of the graph into “short” edges and adding the



|Vk| k Time (in seconds) to
Optimal Layout Optimality Proof

9

5 0.1 0.8
6 0.5 1.0
7 0.7 1.4
8 1.6 2.3
9 3.1 3.9
10 2.8 4.2
11 4.0 5.8
12 5.4 10.3

10

5 1.2 2.0
6 3.3 4.7
7 6.4 9.1
8 7.0 9.4
9 12.8 16.0
10 19.5 22.9

11

5 9.6 11.8
6 12.5 17.5
7 36.7 41.7
8 52.9 73.7

12 5 16.8 23.4
6 76.0 104.0

Table 1: ILP Experiments for random examples

corresponding dummy nodes, as described in Section 3, this exam-
ple has 4 layers, 55 nodes and 100 edges. The node ordering in the
layout of the Sankey diagram shown in Figure 1 has been computed
using Sugiyama’s heuristic method [13]. In contrast, Figure 2 dis-
plays the layout resulting from computing the node ordering with the
ILP method we propose. The optimal layout avoids many of the long
and hard-to-follow crossing edges of the heuristic layout, making
the diagram much easier to interpret. Furthermore, the ILP solver
returned the solution (and proved its optimality) in 3 seconds. We
believe that the trade-off between the quality of the layout and the
running time makes this ILP model appealing for many applications.

Test on synthetic data
We have generated synthetic graphs G = (V,E) to further test the
performance of our model. The generation of G is controlled by three
parameters: the number of layers k of G, the number of nodes per
layer |Vk|, and the total number |E| of edges of the graph. In practical
Sankey diagrams, the number of nodes needs not be constant across
all layers, but this allows us to better analyze the behavior of the
running time in that parameter, as the number of possible node
configurations is then simply (|Vk|!)k.

Typical Sankey diagrams are fairly sparse even with the addition
of dummy nodes to split the long edges into consecutive short edges.
For these experiments, the edge density was set to be 20% of possible
combinations between two consecutive layers (i.e. each node from
a layer would be connected to the 20% of nodes of the subsequent
layer). Table 1 shows the time that it takes to find the optimal layout,
as well as the time required to prove its optimality (this includes the
time to find the layout). Each value in the table is the average time
over ten random graphs with the same parameters. Unsurprisingly,
the running time generally increases as either |Vk| or k increases, but
in a much slower fashion than (|Vk|!)k, thanks to the efficiency of ILP
solvers. It is remarkable that a significant part of the computation
time is devoted to finding the best solution, even though, in our
tests, the ILP solver always finds a dummy solution as well as a
few improving solutions within the first second. This observation
supports our decision to use ILP, as it seems that very good or even
optimal solutions for Sankey diagrams are very hard to find and that
some degree of enumeration is most likely required.

Note that in an interactive setting, ILP solvers can output the best
solution found so far, while still looking for improving solutions.

Figure 5: Sankey Example with Grouping Constraints

Indeed, for the “real world” data and all synthetic data, a first solution
was always found during the first second of the search. For some
applications, this may be a preferable setup than a heuristic that
quickly terminates but offers no possibility of improvement over the
first solution.

5 EXTENDING THE SANKEY DIAGRAM WITH GROUP CON-
STRAINTS

We provide an example of the extensibility of ILP models by defin-
ing group constraints between nodes on a given layer. For some
applications it may be desirable to represent some nodes as a group
or in a common box on a layer. For example, the nodes might repre-
sent divisions of a larger company, hence grouping them together
makes the impact of the company easily visible.

We extend the model in Section 3 with additional input data that
defines groups. Each group U ⊂Vk is a set of nodes belonging to the
group on a layer k. For each node u in layer k that does not belong to
the group U , we define a binary variable yu,U that is equal to 1 if and
only if u is above every node in the group U . For a group U in layer
k, we can thus enforce all nodes within U to have the same relative
position with respect to each node outside of U with the constraint:

xu1,u2 = yU,u2 ∀u1 ∈U,u2 ∈Vk \U. (10)

Figure 5 has been obtained by specifying six arbitrary groups of
nodes in different layers with the same data as used in Section 4, and
adding to the models the corresponding y variables and constraints
(10). One interesting feature of these group constraints is that even
though we are adding variables and constraints, the problem is solved
faster. Indeed, not only is the set of feasible solutions significantly
reduced by the introduction of groups, but fixing the value of one y
variable also fixes |U | variables of type x, which allows the space of
solutions to be searched by ILP solvers more efficiently.

6 CONCLUSION AND FUTURE WORK

We introduced a news criterion to find an optimal layout of a Sankey
diagram by reducing the total area of crossing edges. This method
displayed a more readable drawing than using a heuristic method that
also finds the order of nodes in all layers. Furthermore, we provided
an ILP model that finds the optimal node ordering in each layer and
this model can be easily extended by adding other constraints to
maintain predefined nodes to be kept together in a layer.

While the running time is already viable for moderate-size dia-
grams, further improvements may be achieved by refinements to
this model (or others). Further scalability to very large problems
is possible using large-neighborhood search techniques [11] which
find optimal solutions for part of the diagram, in an iterative manner
across the whole diagram.
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