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Networks are a way to model relationships between people, places, things, ideas, commodities, or really any 

type of entity you can think of. We can call the relationships “links,” and the things they are linking “nodes”. 

The nodes and links may be visualized diagrammatically or using a tabular or adjacency matrix. In the 

information visualization literature, networks are typically discussed as a first-order data type where the 

relations are clearly defined by the application. For example, in a rigorous text on visualization analysis and 

design, Tamara Munzner introduced the “network data type” as arising in applications such as social 

networks, computer networks, or gene interaction networks.1 Generally, Munzner positions data visualization 

as a tool for exploring large quantities of data using fairly straightforward mappings of the data to “marks” 

and “channels” (such as spatial position and color) and then harnessing the power of human visual perception 

to identify structure in the data. Such observations allow the viewer to internally build a mental model of the 

important aspects of the data. 

Munzner defines network visualization as a specialization of general data visualization, but one applied 

specifically to network-structured data. This article examines two aspects of network visualization that blur 

this distinction and are commonly underappreciated by the information visualization community. Taken 

together, these two aspects suggest that—in addition to the straightforward visualization of raw network 

data—there is another role for network views in the visual-analytics workflow.  

First, networks can be used to model structural properties in all kinds of non-network data, including 

quantitative and tabular data. For example, neuroscientists compute functional brain networks from 

correlated activity detected in different regions of the brain.2 Work has also begun to explore frameworks for 

extracting networks from schemas of tabular data.3,4 However, such operations are by no means standard in 

general-purpose visual analytics toolkits. In this article, I discuss a use case where complex movements in 

quantitative data in the finance domain are modeled with small-scale network visualization. 

Thus, networks can be derived from other types of data through automatic and semiautomatic processes, 

and they can be viewed in combination with other data. In either case, the network offers a higher-level view 

of the data than a visualization of the raw data itself. But we can go further. The second aspect of networks 

that is underappreciated by the visualization community is that, in addition to modeling data, they can model 

knowledge. 

Munzner and others argue that the “mental model” is the end goal of data visualization. But if we can 

express this mental model as a network, then we can visualize it as a meta-map of the analyst’s exploration. 

Such a map could link to the various low-level views explored by the analyst as well as their hypotheses and 

insights. Research in cognitive science has shown that such external representations of knowledge through 

different types of diagrams fundamentally augment human problem-solving abilities, beyond mere “inputs 

and stimuli to the internal mind” or “memory aids”. 5  



Higher-Order Network Visualization 

Expressing complex thought processes as node-link diagrams is not a new idea. People frequently explain or 

explore their complicated ideas visually,6 and software exists to assist with this mind-mapping procedure.7 

The opportunity I explore here is the systematic use of network visualization as a kind of externalization of 

the analyst’s thought processes throughout the visual-analytics process. In the following sections, I review 

several exemplar systems that are distinguished from the textbook network data visualization scenario in the 

following ways: 

• bottom-up rather than top-down data exploration, 

• showing the network as a small subset or abstraction of a much larger network data source, 

• considering rich multivariate and/or heterogeneous data, and 

• showing the network as a conceptual model of the dependencies or relationships between other 

kinds of data items. 

A common thread between these distinct examples is that they all offer views that are closer to highly 

curated externalizations of the analysts’ insights than to views of the raw data. They are higher-order 

visualizations in the sense that the network visualized is composed from a number of smaller analysis steps, 

from relationships derived or inferred from raw data, or both. 

In a fit of recursion, Figure 1 employs a higher-order network diagram to identify three possible paths for 

the creation of higher-order network visualizations in the data-analysis process: 

1. Through interactive exploration using standard visualization techniques. Each node in the higher-

order network view corresponds to a distinct insight and may correspond to a whole region of 

interest in the underlying data. In that case, each node corresponds to a distinct query on the 

underlying data. 

2. Through more domain specific and possibly nonvisual interactive techniques. One of the example 

systems I describe here offers a bottom-up exploration of network data through queries on tabular 

data. A second example system allows a developer to create a highly curated view of a particular 

aspect of software while the code remains the primary focus. 

3. By direct translation from the data to a higher-order network view through an automated 

transformation. The transformation could be a relatively simple extrapolation of correlated 

movement in quantitative data, or it could be more sophisticated machine-learning techniques. 

 

Figure 1. Higher-order network visualizations are externalizations of the analyst’s mental model of 

insights about complex data. This figure identifies three paths to the creation of such a visualization of 

knowledge: (a) via interactive exploration of the data using standard visualisation techniques, (b) through 

more domain-specific interactive techniques, and (c) by direct translation from the data to a higher-order 

network view. 



In each case, higher-order network visualizations offer a kind of meta-analysis, helping users reason about 

what they do and do not know about the data. This aspect may be particularly useful in collaborative analysis 

scenarios where the diagrams form an externalization of multiple analysts’ shared understanding and can 

facilitate discussion. Similarly, they are useful for communicating complex findings to a wider audience. For 

example, the people standing in the background in Figure 1 may be a passive audience or may be actively 

contributing to the higher-order view through their own explorations. 

Collectively, these types of higher-order network visualization tools represent an interesting trend that is 

at odds with the traditional infovis mantra: “Overview-first, zoom-and-filter, then details on demand.”6 

Where previously there was pressure for network visualizations (and their supporting technologies such as 

layout algorithms) to scale to large representations of every node and link, these types of small, focused 

diagrams have a different set of requirements. 

Consider the layout problem alone as an example: layout algorithms in these scenarios need to be able to 

provide a high-quality layout that can produce diagrams that are as clear as possible; work incrementally to 

support interaction, user manipulation, and bottom-up construction; and be compact to maximize the area 

available for nodes to show additional detail. Many aspects of interaction will also differ for such higher-

order network visualizations. For example, in the code visualization scenario I describe later on, the graph 

visualization is no longer the primary artifact; it is an adjunct to the analyst’s main focus, which in this case 

is a code editor. 

Example Systems 

Figure 2 shows a typical view of an anti-money-laundering analysis scenario using the Influent system.8 

Influent is the latest in a larger family of software products from Uncharted Software, and it builds on ideas 

established in their more freeform nSpace Sandbox software,9 which they call a “thinking environment.” 

 

Figure 2. The Influent system supports a bottom-up exploration of the movement of funds between 

accounts. New account nodes are added only as the result of a direct user query, and the interface makes it 

easy to collapse links that turn out to be uninteresting to the investigation. (Copyright 2016 Uncharted 

Software. Used with permission.) 

The visualization is built up through an outward (or bottom-up) exploration beginning with accounts 

belonging to the individual who is the focus of an investigation. The starting point of the exploration involves 

a domain-specific search with intermediate tabular and geographic representation, making this an example 

of path 2. Each node consists of a micro chart view of funds coming into and leaving an account. The macro 

level allows the analyst to follow these transfers into other accounts to look for suspicious activity. The 

bottom-up construction of these network views means that the visible network is closely aligned to the 



analyst’s growing understanding of the critical transfers. Each new account node is added only as the result 

of a direct user query. The interface makes it easy to collapse links that turn out to be uninteresting to the 

investigation and hence keep the diagram small and focused. 

Figure 3, an example of path 1 to higher-order network creation, is dual-view visualization of multivariate 

network data developed by Stef van den Elzen and Jarke van Wijk.3 Figure 3a shows the initial view of all 

data elements (in this case US counties) arranged according to their data attributes (here latitude and 

longitude). The user can select subsets of these nodes using lasso operations in this attribute plot. Multiple 

selections may be created. When such a selection is made, a meta-node appears in the diagrammatic view 

(see Figure 3b). If data elements within a pair of selections are linked in the underlying data, then an arrow 

also appears in the diagram, showing the cardinality of such links. As the figure shows, various visual 

summaries of the data attributes within each selection may be displayed within the meta-nodes in the diagram. 

As the analysis progresses, the diagram gradually grows into a rich infographic representation of the analyst’s 

insights from exploring the data. Also, because each meta node corresponds to a distinct range query 

(selection) over data attributes, the provenance of the final diagram is easily verified through an interactive 

interrogation of this mapping to the original data. 

 

Figure 3. Detail to overview via selections and aggregation. (a) The initial view of all data elements (in 

this case US counties) are arranged according to their data attributes (here latitude and longitude). (b) 

Using lasso operations, the user can select subsets of these nodes. If data elements within a pair of 

selections are linked in the underlying data, then an arrow also appears in the diagram, showing the 

cardinality of such links. (Courtesy of van den Elzen.3) 

The two systems in Figures 2 and 3 are representative of what can be seen as a growing trend in network 

visualizations to move beyond simple representations of raw data. In the following sections, I present two 

additional examples from my personal experience and discuss them in greater detail. The first differs slightly 

from the first two examples in that it is a design for a network visualization that aims to summarize 

quantitative movement in financial data. This application domain was chosen for this article specifically 

because practitioners in such fields commonly use charts and other direct mappings of their data to visuals. 

Indeed, they are typically strong customers of visualization software. Still, financial analysts are typically 

less accustomed to a network view of their data. 

The final example describes a commercial product where network visualization was initially adopted 

according to fairly standard information visualization principles, as a general way to explore large networks 

of software dependencies. Over the course of an extended user-centered design process, the tool evolved into 

something quite different and arguably closer to a tool that allows an analyst to externalize a complex mental 

model.  

From Quantitative Movement to Flow 

Fund managers invest in stocks across a variety of industry sectors, adjusting their holdings over time to try 



to achieve consistent overall growth in the fund’s value. The raw data describing a single fund’s composition 

is a set of time-series data, a sequence of values by stock or industry sector over time. The visualization task 

to provide a summary view of the significant movements within the fund over time.10 There are several 

standard alternatives for visualizing such data. A small-multiples display could show a subset of the most 

volatile market sectors, or the time series could be stacked into a single chart. 

However, our analysts were not just interested in the increases or decreases in value or quantities of stock 

within an individual market sector. Rather, they wanted to be able to quickly and succinctly know, when 

money is shifted out of an underperforming industry sector, which other sectors within the fund were the 

most significant beneficiaries of the manager’s reweighting. To better show this higher-level information, I 

designed the network view in Figure 4. It is an example of higher-order network creation through automatic 

transformation of underlying quantitative data (hence, path 3). 

Figure 4. 2.5D network view of a stock fund showing movement over time. (a) Each column represents a 

market sector, and the diameter of a column changes with the amount invested by the fund in the 

corresponding market sector. The arrows between the columns indicate the most significant reweightings 

at a particular point in time. (b) The cross sectional view corresponds to the time period indicated by the 

level on the columns intersected by the blue plane, or “water level.” 

The view uses a space-time cube concept such that time increases from bottom to top in the orientation 

shown (see Figure 4a). Each column represents a market sector. The diameter of a column changes with the 

amount invested by the fund in the corresponding market sector. Viewed from the side, the columns are like 

time series charts. The arrows between the columns indicate the most significant reweightings at a particular 

point in time―in effect, showing a flow of money. Determining which “significant” movements need to be 

shown with arrows can be quite sophisticated. Thus, this node-link diagram tells a rich story about the 

movements in the portfolio that an analyst can use to summarize key events over the history of the fund.  



Figure 4b shows a cross sectional view for the time period corresponding to the level on the columns 

intersected by the blue plane, or “water level.” This smaller view distinctly highlights one of these key events, 

movements out of the four most troubled sectors into two safer sectors in a period of particular market 

volatility. 

This network view then neatly summarizes the movements in a way that is intuitive to the analyst in 

exploration but can also function as a tool that supports presentation of fund performance to investors or 

regulatory bodies. The transformation of data into visuals that are as effective and engaging as possible for 

compelling presentation is an emerging topic in information visualization research.11 Higher-order network 

flow diagrams can play an important role in data storytelling as a way of summarizing key movements in 

otherwise complex data. 

Code Dependencies from the Bottom Up 

Over the decades information visualization researchers and practitioners have developed powerful tools for 

visualizing large and complex network data in a single view. Fast and clever algorithms have been developed 

to untangle networks with many thousands of nodes in seconds,12 and modern graphics hardware can easily 

render millions of lines or boxes. When people who work with complex systems or data that has an inherent 

network structure discover these facilities, they become excited about the possibility of seeing their network 

in its entirety for the first time.  

Software engineers are a prime example of practitioners who commonly work with complex systems that 

are, in essence, huge graphs. For example, software dependency graphs can easily encompass hundreds of 

thousands or millions of dependency relationships between a variety of software elements. Software 

practitioners usually only view of their software is the code, so it is exciting for them to obtain a god-like 

overview of the structure of their entire software system for the first time. Many visualization tools for 

software engineers have followed this top-down workflow,13 allowing software engineers to drill in from an 

overview of the highest-level components (such as separate libraries) to the finest details (such as individual 

functions or variables). 

In such a top-down exploration, the hope is that dependencies that violate best software engineering 

practice will become apparent. For example, well-designed components should have a clear separation of 

concerns, reflected by weak coupling in terms of the visible links between them. Again, this is precisely the 

kind of analysis task for raw network-structured data that is core business for the information visualization 

workflow.14  

In 2010 Microsoft shipped an Architecture Explorer feature in the Visual Studio IDE (integrated 

development environment) that followed precisely such design precepts. While potentially of use to software 

architects in refactoring projects, in retrospect it was felt that such top-down exploration had little day-to-day 

application for most users. For the next version of the software, the development team (of which I was a 

member) decided to add support for a bottom-up exploration of code. The new feature, called Code Map, 

shipped with Visual Studio 2012. The Code Map feature can be invoked from many different places in the 

IDE to map out a small neighborhood of dependencies around any element of code. Hence, it is an example 

of path 2, or the domain-specific bottom-up creation of the higher-order network visualization.  

To demonstrate the Code Map implementation, I detail a small scenario: a developer debugging a crash 

in a Tetris game.  The crash occurs when the program attempts to invoke a method on an object reference 

(called Figure) that is null. To fix the bug, the developer needs to trace through the code and find the reason 

for Figure being null at that time. 

The usual approach to diagnosing such a problem is to repeatedly rerun the program, working backward 

from the crash site with breakpoints and inspecting state until something suspicious is noticed. However, 

when a crash is infrequent and inconsistent, repeatedly reproducing it can be time consuming. Therefore, a 

systematic exploration through the code is preferable, but tracing the various paths through the code can be 

complex and mentally taxing. 

While developing Code Map, we interviewed developers about how they kept track of this exploration 

and found that none of the methods used were much more sophisticated than note-taking with a pen and 

paper. Thus, the Code Map tool seeks to automate this visual note-taking as much as possible. 

To begin the debug task for the Tetris game, Code Map shows the call stack as a simple chain, side by 

side with the code editor. These initial call-stack nodes are red in Figure 5. The current stack frame is marked 



with a yellow arrow. The null-reference error occurs in the DrawPreview method. The call stack shows that 

DrawPreview is reached from preview_Paint. Double-clicking on the preview_Paint node in the diagram 

navigates the code editor to that method, where the developer learns that the null parameter is passed into 

DrawPreview as the result of the method GetNextFigure. From a context menu or key press, a method for 

GetNextFigure is added to the diagram. 

 

Figure 5. Code Map for the Tetris bug scenario. The initial call-stack nodes are in red, the current stack 

frame is marked with a yellow arrow, and nodes representing types are in blue. Double-clicking on a node 

in the diagram navigates the code editor to that method. The lack of any arrow to Square indicates that it is 

the missing case. 

Navigating to GetNextFigure (again by double-clicking on the node in the diagram), the developer finds 

that GetNextFigure has a switch statement, using the value of an integer field called nextFig to determine a 

subclass of Figure to instantiate and return. Clicking on the nextFig node in the diagram, she can run a query 

to show all the places where the field is accessed. 

It turns out that nextFig is only modified in two places: once from the class constructor and again from a 

method call InitNextFigure. Here the developer learns that nextFig is set to a random value in the range of zero 

to NumFigures. Navigating to the definition of NumFigures in the diagram (again with a double-click), she finds 

it is set to seven. Is this the correct number of subtypes of Figure? Adding the Figure type to the diagram and 

running a query of all of its descendant types, she finds that there are seven (nodes representing types are 

blue in the Code Map). Only six of these are referenced from GetNextFigure, and she sees from the lack of 

any arrow to Square that it is the missing case. Adding this case resolves the bug. The developer can document 

this with a comment node. 

In addition to adding nodes and links as the result of queries on the underlying dependency graph, users 

are free to edit the graph to better reflect or document their mental models of the key system function. For 

example, they can remove nodes associated with code elements when they are realized to be irrelevant to the 

scope of the search, or they can add arbitrary nodes containing notes, as we did in this example. Thus, the 

diagram can be submitted along with code changes to assist with review or be kept as documentation. 

Discussion 

I have explored several network visualization use cases that I consider a higher-order form of visual analytics 

than raw data visualization. In each case, the networks are relatively small and highly abstracted from the 

data, either manually by the analyst or by an automatic transform, to represent insights rather than raw data. 

In Figure 1, I identified three distinct paths for producing these types of higher-order network diagrams: from 

lower-level data visuals, from domain-specific views, and through automatic transformation from the data. I 

chose specific examples that illustrated each of these paths. However, the three paths need not be mutually 



exclusive and, ideally, would be seamlessly combined into an exploratory system. 

For example, higher-order network visualizations can perform several functions, providing (again, not 

mutually exclusively) the following: 

• A visual summary can tie together key data analysis insights and support the analyst’s own 

reasoning process or communication with other collaborators or a more passive audience (data 

storytelling). 

• A navigational aid can provide a history of past queries or landmarks in exploration. This lets an 

analyst recall or audit the provenance of important findings. 

• A minimal subset or abstraction of data may be too granular to clearly see the most significant 

movements or relationships at full detail. 

Additional Context 

There is strong precedent for modeling knowledge (or insights, in data analytics terms) as networks in 

Semantic Web research. There are significant efforts to automatically compile huge networks of facts from 

automatic reading of the Web (such as the Never-Ending Language Learning Project15) or manual annotation 

of documents.16 Visualization of the Semantic Web, or knowledge visualization, is also an active area of 

development―for example, Alberto Cañas and his colleagues developed a formalism for this called concept 

maps.17  

Others have spoken in general terms about the need for visualization of various aspects of the visual 

analytics process itself. For example, Min Chen and his colleagues proposed a high-level architecture for 

visual analytics systems that feature a knowledge-supporting infrastructure with its own visual pipeline, 

parallel to the direct data visualization.18 The kind of higher-order network visualizations I have described 

slot quite neatly into this framework.  

Part of our discussion in this article is about the transformation of different types of data to a network 

model. To further place this discussion within a broader context, David Kasik and his colleagues discussed 

the space and import of various data transformations in the visual analytics process and warn that “there is 

no single transformation or representation method to uniformly address all data issues.”19 There are certainly 

visual forms other than node-link diagrams that could be used to convey high-level or abstract information 

about the data or the analyst’s insights. Indeed, three of the four systems highlighted in our discussion here 

feature different types of quantitative data summaries within their nodes. Thus, the diagrammatic node-link 

form is an abstract and powerful starting point that can model many different semantics as well as being 

easily augmented with these types of annotations. Still, a more complete discussion of higher-order visual 

analytics would also need to consider alternatives such as nested, tiled, or tabular views. Alternatively, we 

could broaden the definition of network diagrams to be any spatial arrangement that implies relation. 

This article has argued for the potential of network diagrams to fulfill a higher-order role of visualizing 

insights about the data rather than a direct representation of the data itself. I have described different paths 

from the data to such a diagram, both supervised and unsupervised. A logical middle-ground that has not 

been discussed is semisupervised higher-order network visualization construction, where the construction of 

the higher-order view is a collaboration between human and automated techniques. 

In the future, a formal exploration of the design and application spaces for higher-order network and other 

types of rich diagrammatic visualization would be as a fruitful direction for our research community. Doing 

so could lead to tools that support every aspect of the visual-analytics workflow, supporting not only the 

search for insights in raw data, but also helping the analyst to build logical connections between those 

insights. In other words, the externalization of the analysts’ thought process could support more systematic 

initial exploration, but also communication of results and ongoing collaborative data analytics. 
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